• Title/Summary/Keyword: Flight-Critical Function

Search Result 16, Processing Time 0.027 seconds

Design on Flight-Critical Function of Mission Computer for KUH (한국형기동헬기 임무컴퓨터 비행필수기능 설계)

  • Yu, Yeon-Woon;Kim, Tae-Yeol;Jang, Won-Hong;Kim, Sung-Woo;Lim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • Avionics system tends to be designed to have the integrated architecture, and it is getting difficult and complex to verify the flight-critical function because of sophisticated structure. In Korean Utility Helicopter, mission computer acts as the MUX Bus Controller to handle the data from both communication, identification, mission/display and survivability equipment inside Mission Equipment Package and aircraft subsystems such as fuel system and electrical system while it is interfacing with Automatic Flight Control System and Full-Authority Digital Engine Control via ARINC-429 bus. The Flight Displays which is classified as flight-critical function in aircraft is implemented on Primary Flight Display after mission computer processes data from AFCS in order to generate graphics. This paper defines the flight-critical function implemented in mission computer for KUH, and presents the static and dynamic test procedures which is performed on System Integration Laboratory along with Playback Recorder prior to flight test.

A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law (제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Shin, Ji-Hwan;Park, Sang-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

Implementation of Flight Data Storage System with Compression and Security (압축 및 보안 기능이 있는 비행데이터 저장 시스템 구현)

  • Cho, Seung-Hoon;Ha, Seok-Wun;Moon, Yong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.3
    • /
    • pp.157-162
    • /
    • 2012
  • In this paper, we propose a flight data storing system for effective data processing. Since the flight data contains critical information and their sizes are vast, encryption and compression would be needed to manage the flight data in effect. And we implemented the flight data storing system using an embedded board with DSP based on DPCM compression and AES encryption. Especially, we applied the reordering technique to advance the security function. From the simulations for two type data of voice and avionics, we found the developed system is well performed.

A Study of Software Hazard Analysis for Safety Critical Function in Military Aircraft

  • Oh, Hung-Jae;Hong, Jin-Pyo
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • This paper is the Software Hazard Analysis (SWHA) which will study the managerial process and the technical methode and techniques inherent in the performance of software safety task within the Military Aircraft System Safety program. This SWHA identifies potential hazardous effects on the software intensive systems and provides a comprehensive and qualitative assessment of the software safety. The purpose of this paper is to identify safety critical functions of software in Military A/C. The identified software hazards associated with the design or function will be evaluated for risks and operational constraint to further improve the software design requirement, analysis and testing efforts for safety critical software. This common SWHA, the first time analysis in KOREA, was review all avionics OFP(Operational Flight Program), and focus only on software segments which are safety critical. This paper provides a important understanding between the customer and developer as to how the software safety for the Military A/C will be accomplished. It will also provide the current best solution which may as one consider the necessary step in establishing a credible and cost-effective software safety program.

Molecular Mechanism of Parkinson's Disease

  • Chung, Jong-Kyeong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • Parkinson's disease is characterized by motor disturbances and dopaminergic neurodegeneration. parkin and PINK1, two most critical Parkinson's disease-associated genes, have been intensively studied to address the underlying molecular pathogenesis of the disease, but our understanding still remains unclear. Through generation and characterization of Drosophila mutants for PINK1, we show that PINK1 is required for mitochondrial integrity and function in both indirect flight muscles and dopaminergic neurons. Surprisingly, we find that PINK1 mutants share striking phenotypic similarities with parkin mutants. Indeed, transgenic expression of parkin dramatically ameliorates all PINK1 loss-of-function phenotypes, but not vice versa, implicating that Parkin acts downstream of PINK1 in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons. With the establishment of the PINK1-Parkin pathway, we are trying to further investigate the detailed molecular relationship between PINK1 and Parkin using both mammalian dopaminergic neuronal cells for biochemical analysis and Drosophila model animal for genetic analysis. We believe that elucidating the molecular function of Parkinson's disease-associated genes will be of big help for the ultimate understanding of the pathogenic mechanism of this disease and also for the development of effective drugs for Parkinson's disease.

  • PDF

Failure Analysis of Composite Wing Under Random Gust (랜덤 돌풍을 받는 복합재 날개의 파손 해석)

  • Kim, Tae-Uk;Lee, Sang-Wook;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.508-512
    • /
    • 2004
  • An aerospace vehicle in flight can be exposed to random gust which may cause critical structural failure. In this paper, the failure analysis is conducted for composite wing subjected to random gust. For this, the profile of random gust is idealized as a stationary Gaussian random process and the power spectral density (PSD) of wing bending moment induced by gust is obtained. The PSD function is converted to probabilistic distributions and the failure probability during total flight time is calculated by Monte Carlo simulation.

  • PDF

A Study on the Safety Requirements Establishment through System Safety Processes (시스템 안전성평가를 통한 효율적 요건 도출방안 연구)

  • Yoo, Seung-woo;Jung, Jinpyong;Yi, Baeck-Jun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-34
    • /
    • 2013
  • Safety requirements for aircraft and system functions include minimum performance constraints for both availability and integrity of the function. These safety requirements should be determined by conducting a safety assessment. The depths and contents of aircraft system safety assessment vary depending on factors such as the complexity of the system, how critical the system is to flight safety, what volume of experience is available on the type of system and the novelty and complexity of the technologies being used. Requirements that are defined to prevent failure conditions or to provide safety related functions should be uniquely identified and traceable through the levels of development. This will ensure visibility of the safety requirements at the software and electronic hardware design level. This paper has prepared to study on promoting the efficiency of establishing hierarchical safety requirements from aircraft level function to item level through system safety processes.

A development of test and evaluation equipment for pulsed doppler radar (펄스도플러 레이더 시험장치 개발)

  • 신현익;이정욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.154-162
    • /
    • 1996
  • The test and evaluation is a integal part of the radar development process and it consists of two parts, field test and in-house test using a standard simulated signal. To take the in-house test, the test environment is needed to generate the critical signal that is used to determine the system design parameters and consists of general urpose measurement equipments, specialized boards and operating softwares. This paper presents the in-house test environment configuration and its function for radar system. Because this test environment genrates the simulated radar signal which has arbitrary flight path and target condition, the developed test environment makes easily to evaluate the function for radar system. The program ability of test parameters makes it possible to apply a test for 2D and 3D radar system.

  • PDF

A Study on Aircraft Sensitivity Analysis for C.G Variation of Longitudinal Axis (항공기 세로축 무게중심의 변화에 따른 민감도 해석에 관한 연구)

  • 김종섭
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.83-91
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in longitudinal axis to achieve performance enhancements and improve stability. The flight control law of T-50 advanced trainer employs RSS concept in order to improve the aerodynamic performance and guarantee aircraft stability. The longitudinal center of gravity(X-c.g) varies as a function of external stores, fuel state and gear position. Shifts in X-c.g relate directly to longitudinal static margin in aircraft stability. This paper deals the maximum aft X-c.g for critical aircraft loadings and checks static margin limits using sensitivity such as damping, natural frequency, gain and phase margin. And nonlinear analysis was conducted for such as short period input. And also, this paper shows the T-50 aircraft stability based on the result of high angle of attack flight such as upright and inverted departure.

Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method

  • Kim, Min-Jae;Hong, Ji-Seung;Kim, Chang-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and solved DMS technique. The DMS method is easy in handling constraints and it has large convergence radius compared to other strategies. When parameterized with piecewise constant controls, the problems become most effectively tractable because the search direction is easily estimated by solving the structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. This study focused on the approximation of the KKT system using the matrix exponential and its integrals. The propose method is validated by solving optimal control problems for the linear system where the KKT system is exactly expressed with the matrix exponential and its integrals. The trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the effects of algorithmic details. The results show the matrix exponential approach to compute gradients and the Hessian matrix is most efficient among the implemented methods when combined with the mixed time integration method for the system dynamics. The analyses with the proposed method show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used to solve critical areas of helicopter flight dynamic problems.