• Title/Summary/Keyword: Flight stress

Search Result 128, Processing Time 0.031 seconds

Women's Uniform Shirts' Pattern Alteration by Applying the Work Postures of Flight Attendants (항공기 승무원의 작업 동작을 반영한 여성용 유니폼 셔츠 패턴 개선 방안)

  • Lee, Min-Ji;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.5
    • /
    • pp.1019-1030
    • /
    • 2011
  • The aim of this study was to develop a pattern of flight attendant uniform shirts to provide better comfort for their work postures. Flight attendants' work postures were evaluated to determine the problems of clothing and mobility during their work. The pattern of the flight attendants' uniform shirt was altered by applying dynamic wearing ease(DWE). DWE was calculated from four standardized dynamic postures and a static posture. An experimental garment was made with the altered postures. The researcher redesigned the pattern of the uniform shirts, which minimizes physical limitations in movements. The fit and mobility of the shirts were evaluated. Results of this study are as follows. First, the five representative work postures were selected by "clothing stress" and "repetitiveness." These postures included raised arms, twisting midriff and shoulder postures. Five representative postures were selected by using the ergonomic posture assessment device index(OWAS). Second, the experimental garment was developed by applying DWE across the back and at armhole depth, back length, and side length. Third, the fit and mobility of the experimental garments and the original uniform shirts were compared at the flight working environment set and 5 dynamic body postures of raising arms. The experimental garments made with an altered pattern provided better fit and mobility than the original sample shirts.

Flight Loads Analysis for Conceptual Study of the Regional Aircraft Wing Structure (중형항공기 주익 구조개발 선행연구를 위한 비행하중해석)

  • Shin, Jeong-Woo;Kang, Wang-gu;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.67-73
    • /
    • 2011
  • For loads analysis of airplane, applicable regulation should be determined. Then, loads conditions are prepared from the regulation. Modeling for aerodynamic, mass, and structure are performed. Panel method is usually adopted for aircraft loads analysis to obtain air loads. The ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by the KARI and TsAGI are used for loads analysis. The ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis for wing structural design of the regional aircraft at the conceptual design phase are performed with the ARGON. FAR 25 is used for the regulation for the load analysis. Shear force, bending moment and torsion diagrams for the wing and shear force and hinge moment for the aileron are presented.

The optimum Design of the Multi-flight Screw using Finite Element Analysis (다중날을 가진 스크류의 최적화 설계)

  • 최동열;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

A Study on the Effects of Student Pilot Stress on Psychological Health (학생 조종사의 스트레스가 심리적 건강에 미치는 영향에 관한 연구)

  • Kim, Geun-Su;Kim, Ha-Young
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.203-212
    • /
    • 2019
  • The purpose of this study was to identify the effects of stress factors of student pilots on mental health, and to reduce the safe and efficient misconduct education and psychological disharmony by identifying the psychological buffering role of stress coping style and social support. In order to achieve the research purpose, a research model and hypothesis were presented based on previous studies, and regression analysis and mediation effect verification were conducted through a questionnaire survey of 202 student pilots. As a result of the analysis, factors such as flight stress, values stress, professor stress, and friend relationship stress have been shown to affect emotional conditions or psychological well-being. Also we found that the parameters of disengagement coping, family/friend support and organization Support had a mediating effect on the factors between student pilot stress and psychological health. Therefore, student pilots need to manage problems and negative emotions that may cause from flight training, value distractions, professor and friendships' relationship and it is suggested that organization support for training and safety related to emotional support and delinquency of family and friends.

Alterations in hematological parameters in Republic of Korea Air Force pilots during altitude chamber flight (저압실 비행 훈련이 대한민국 공군 조종사의 혈액 성분에 미치는 영향)

  • Kim, Hyun-Soo;Jeon, Eun-Ryoung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • An altitude chamber, also known as a hypobaric chamber, is a device used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body. Although data from altitude chamber researches using experimental animals have been accumulated, studies in the humans exposed to hypobaric conditions are seldomly reported. Despite the importance of altitude chamber flight training in the field of aviation physiology, the hematological analysis of post-flight physiological changes has rarely been performed. The aims of the present study were to investigate the alterations in blood components during altitude chamber flight and to determine whether the differences between pre- and post-flight values are significant. Sixty experienced pilots in the Republic of Korea Air Force were enrolled in the altitude chamber flight training. Venous blood samples were obtained before and immediately after the flight. Compared with the pre-flight values($6.32{\times}10^3/mm^3$, $5.02{\times}10^6/mm^3$, 15.61 g/dL, respectively), white blood cell count, red blood cell count and hemoglobin level were significantly increased after the flight($6.77{\times}10^3/mm^3$, $5.44{\times}10^6/mm^3$, 16.26 g/dL; p=0.006, p=0.012, p<0.001, respectively). These alterations may be attributable to the exposure to hypobaric hypoxia, 100% oxygen supply for denitrogenation, considerable rise and fall in altitude and psychophysical stress due to these factors. In further studies, experimental groups and methods should be individualized to ensure objectivity and diversification. In addition, multiple time-frame analyses regarding the changing pattern of each blood component are also required to elucidate the physiological process for adapting to the high terrestrial altitude exposure.

An Analytical Approach to the Flight Safety of Split Yaw Swaged Rod for a Rotor Craft (회전익기 요 스웨지드 로드 분할에 따른 비행 안전성에 대한 해석적 접근)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook;Yoon, Jae-Huy;Yang, Pil-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.74-80
    • /
    • 2017
  • As for A rotary wing aircraft, the configuration change about split yaw swaged rod was executed to improve hit treat capability for dealing with a long rod. The purpose of this study was to analyze if or not the quality of the split yaw swaged rod was obtained, and so the flight safety was ensured or not. Buckling analysis, Coupling Thread Strength Analysis, Thermal Stress analysis and Rod Natural Frequency Analysis were executed for structural analysis. The results of the analysis were presented that the split rod had the sufficient margin of safety and so there were no anomalies in the limit load and no failures in the ultimate load. And there were no resonances in result of natural frequency analysis. In conclusion, this study showed that the split yaw swaged rod had structural safety, so flight safety of rotary wing aircraft was secured and there was no problem in aircraft operation. It is certain that the technology of splitting the yaw swage rod will contribute to the operational Safety of the rotary wing aircraft in the future.

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading (변동하중에서 미소하중의 제거가 균열진전에 미치는 영향)

  • Shim, D.S.;Lee, S.H.;Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle (소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il;Kang, Kuk-Jin;Park, Mi-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

The Relationships among Needs for Health Promotion Programs according to Emotional Labor and Heathy Lifestyle of Flight Attendants (항공기 객실승무원의 감정노동, 건강증진생활양식과 건강증진 프로그램 요구도와의 관계)

  • Baek, Sang Ei;Kim, Young Im;Cha, Ji Eun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Purpose: The purpose of this study was to figure out emotional labor, healthy lifestyle, needs for health services of flight attendants and the relationships among needs for health services according to various characteristics of flight attendants. Methods: The participants of this study were 140 flight attendants who work on major and low cost airlines. Data were collected through a questionnaire from 2017 .Jan.~2017. Feb. Data were subsequently analyzed using the SPSS 21 Program. Results: The score of emotional labor was 3.76 surface acting was 3.75 and deep acting was 3.77. The average of healthy lifestyle was 2.41, and the highest was 3.13 of personal relationship and the lowest was 1.91 of eating habits. There is a positive correlation between emotional labor-deep acting and healthy lifestyle. Flight attendants demand health services for physical exercise, stress and emotional labor management, healthy eating habits, emergency treatment, prevention of fatigue, cancer screening, sexual harassment prevention, sex education and etc. Conclusion: These results show that flight attendants need to various interventions for improving healthy lifestyle and reducing emotional labor. It is necessary to develop customized health promotion program suited to their job and general characteristics.