• Title/Summary/Keyword: Flight performance test

Search Result 426, Processing Time 0.026 seconds

Design and Development of PCI-based 1553B Communication Software for Next Generation LEO On-Board Computer (차세대 저궤도 위성의 PCI 기반의 1553B 통신 소프트웨어 설계)

  • Choi, Jong-Wook;Jeong, Jae-Yeop;Yoo, Bum-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • Currently developing the OBC of the next-generation LEO satellite by Korea Aerospace Research Institute adopts the LEON2-FT/AT697F processor to achieve high performance. And various communication devices such as SpaceWire, MIL-STD-1553B, DMAUART and CAN Master are integrated to the separated standard communication FPGAs within the OBC, where they can be controlled by the processor and flight software (FSW) through PCI interface. The Actel 1553BRM IP core is used for the 1553B in the next-generation LEO OBC and the B1553BRM wrapper from Aeroflex Gaisler is used for connecting it to the AMBA bus in FPGA. This paper presents the design and development of PCI-based 1553B communication software, and describes the handling mechanism of 1553B operation in FSW task level. Also it shows the test results on real-hardware and simulator.

Development of the System Controller for the Airborne Small SAR (KOMSAR) (항공기탑재 소형 영상레이더 (KOMSAR) 시스템 제어기 개발)

  • Hwang, Yong-Chul;Lee, Cheol-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.86-92
    • /
    • 2005
  • Synthetic Aperture Radar is an active sensor utilizing the microwaves in order to get the requested high resolution imageries day or night regardless of the weather conditions. In this paper, the architecture of a real-time system controller for the airborne small SAR system, KOrea Miniature SAR which was developed by Agency for Defense Development is proposed considering the embedded real-time environment. The main purpose of the system controller is to control the internal and the rest of subsystem within SAR system in real-time. The main characteristics of the proposed system controller were implemented using the real-time operating system and the distributed hardware architecture for the small, low weight and real-time operation. The system controller performance and real-time operation were verified and confirmed by the demo flight with the KT-1 airplane.

A Study on the Allowances of Aircraft Landing Distance (항공기 착륙거리의 여유분 산정에 관한 연구)

  • Noh, Kun-Soo;Kim, Woong-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • Among the phases of flight operations pilots feel much pressure in landing segment. There is a number of factors affecting landing safety while pilots reduce aircraft speeds and make a touchdown and stop completely. If runway length is sufficient for landing, there maybe is no problem. But it is not the case all the time. So it is necessary to confirm whether landing performance is within limits or not. Required landing distance is actual landing distance demonstrated by flight test pilot plus allowances for average airline pilots. FAR(Federal Aviation Regulations) AFM certification is based upon manual landing for dry and wet runway. Other runway conditions are not the certification basis. JAR dictates even contaminated/slippery runway is included by prescribed allowances. Automatic landing is not certification basis, so actual landing distances are provided. In this paper I would like to analyze distance allowances included in each type of runway condition. In addition there is no regulation about allowances for specific runway condition, I would suggest adequate allowances for that case.

A Study on Ka band Qualification Model Multiplexers for Communication, Ocean and Meteorological Satellite (COMS) Payload (통신해양기상위성 Ka 대역 인증모델 밀티플렉서에 대한 연구)

  • Eom, Man-Seok;An, Gi-Beom;Yun, So-Hyeon;Gwak, Chang-Su;Yeom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • This paper presents the results of Ka band qualification model multiplexers for COMS Payload to be launched in 2008. These are the input and output multiplexers of the satellite transponder to use available frequency resources effectively and the diplexer of the satellite antenna to use the same reflector for both transmitting and receiving frequency bands, respectively. The input multiplexer with four frequency channels has four(4) independent channel filters which consist of an 8-pole elliptic band-pass filter for high frequency selectivity and a 2-pole equalizer for group delay equalization. For low insertion loss, mass and volume reduction, manifold type os employed for output multiplexer. E-plane T-junction is used for either splitting or combining a frequency band into two sub-bands. Asymmetric inductive irises are used to tune the receiving filter easily. The electrical performance and environmental test such as vibration test, mechanical shock test, thermal vacuum test and EMC test are performed and the results of all qualification model multiplexers are compliant to the requirement of each multiplexer. Followed by this qualification, the flight model equipment will be developed.

  • PDF

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

Design and Verification of Housing and Memory Board for Downsizing for Crash Protected Memory Module (충돌보호메모리모듈의 소형화를 위한 하우징 및 메모리 보드 설계와 검증)

  • Kim, Jun-Hyoung;Kim, Jung-Pil;Kim, Jeong-Yeol;Kim, Tae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Flight data recorder is a equipment that records data required for investigation of aircraft accidents and should be developed in compliance with the ED-112A standard. Unlike general data storage device, flight data recorder must be able to recover data after an aircraft accident, requiring a housing and a memory board to protect data in extreme environments. To attain this performance, we designed a housing that can withstand the test by analyzing the physical environment of the impact, shear/tensile, penetration resistance and static crush test of the crash survival test and minimized the size and weight compared to the existing one in consideration of the installation of the aircraft in this paper. Insulation material and thermal block material were applied to endure high and low temperature fire so that the internal temperature does not rise above 150℃ even in 260℃, 10 hour environment. In addition, the memory board is designed to minimize the size and we devise a hoping programming method to prevent continuous data loss of more than 16 seconds. Through this, Crash protected memory module that satisfies ED-112A was completed.

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake (회전익기 공기흡입구 주위 방빙장치 성능 해석)

  • Ahn, Gook-Bin;Jung, Ki-Young;Jung, Sung-Ki;Shin, Hun-Bum;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • Ice accretions on the surface around a rotorcraft air intake can deteriorate the safety of rotorcraft due to the engine performance degradation. The computational simulation based on modern CFD methods can be considered extremely valuable in analyzing icing effects before exact but very expensive icing wind tunnel or in-flight tests are conducted. In this study the range and amount of ice on the surface of anti-icing equipment are investigated for heat-on and heat-off modes. It is demonstrated through the computational prediction and the icing wind tunnel test that the maximum mass and height of ice of heat-on mode are reduced about 80% in comparison with those of heat-off mode.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIFFRACTED LIGHT SIMULATION AND TEST RESULTS FOR A CONE OCCULTER WITH TAPERED SURFACE

  • Yang, Heesu;Bong, Su-Chan;Cho, Kyung-Suk;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Baek, Ji-Hye;Nah, Jakyoung;Sun, Mingzhe;Gong, Qian
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.27-36
    • /
    • 2018
  • In a solar coronagraph, the most important component is an occulter to block the direct light from the disk of the sun. Because the intensity of the solar outer corona is $10^{-6}$ to $10^{-10}$ times of that of the solar disk ($I_{\odot}$), it is necessary to minimize scattering at the optical elements and diffraction at the occulter. Using a Fourier optic simulation and a stray light test, we investigated the performance of a compact coronagraph that uses an external truncated-cone occulter without an internal occulter and Lyot stop. In the simulation, the diffracted light was minimized to the order of $7.6{\times}10^{-10}I_{\odot}$ when the cone angle ${\theta}_c$ was about $0.39^{\circ}$. The performance of the cone occulter was then tested by experiment. The level of the diffracted light reached the order of $6{\times}10^{-9}I_{\odot}$ at ${\theta}_c=0.40^{\circ}$. This is sufficient to observe the outer corona without additional optical elements such as a Lyot stop or inner occulter. We also found the manufacturing tolerance of the cone angle to be $0.05^{\circ}$, the lateral alignment tolerance was $45{\mu}m$, and the angular alignment tolerance was $0.043^{\circ}$. Our results suggest that the physical size of coronagraphs can be shortened significantly by using a cone occulter.