• 제목/요약/키워드: Flight performance test

Search Result 427, Processing Time 0.031 seconds

The Ground Test and Evaluation to Verify Engine Performance of Sea-Star I (해성I의 공기흡입식 엔진 성능 검증을 위한 지상시험평가)

  • Jung, Jae-Won;Kim, Jong-Jin;Park, Sang-Woo;Kim, Sang-Yong;Kim, Moo-Gon;Kim, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.381-384
    • /
    • 2009
  • The Air-breathing engine like Sea-Star I is a second propulsive force generator to fly to the target after the booster generating initial propulsive force is separated. The performance of Sea-Star I engine should be verified because the cruise missile controls direction and altitude during flight, so ground engine test is executed before flight test. This these presents evaluation method of ground engine test to verify performance of Sea-Star I's engine.

  • PDF

A Study on 3.0m Low-Altitude Long-Endurance Solar Powered UAV System (3.0m급 저고도 장기체공 태양광 무인기 시스템 연구)

  • Jaebaek Jeong;Taerim Kim;Doyoung Kim;Seokmin Moon;Jae-Sung Bae;Sanghyuk Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.10-17
    • /
    • 2023
  • This paper describes the research and development of a 3.0 m Solar-Powered UAV system for mission flight that is based on the 4.2 m Solar-powered UAV. Both the Solar-Powered UAVs were lightened in weight by applying a composite fuselage and solar charging system. Also, a deep stall landing application and airbag module were installed for usability in mission performance. The flight performance of the Solar-Powered UAV system was verified through flight test. In particular, the 3.0 m Solar-Powered UAV performed continuous flight along the coastline of Jeju Island for 147 km in 3 hours and 50 minutes, and its performance as a mission flight was also confirmed.

QFT application on force controller design for aircraft control surface load simulator (항공기 조종면 부하재현 구동장치의 force control)

  • 남윤수;이진영;이기두
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1684-1687
    • /
    • 1997
  • A dynamic load simulator which can reproduce on-ground the hinge moment of aircraft control surface is and essential rig for the loaded performance test of aircraft test of aircraft acutation system. The hinge moment varies wide in the aricraft flight enveloped depending on specific flight condition and maneuvering status. To replicate the wide spectrum of this hinge moment variation within some accuracy bounds, a force controller is designed based on the Quantiative Feedback Theory (AFT). Through the analysis on hinge moment dynamics, a design specification for the force controller is suggested. The efficacy of QFT force controller is verivied by simulation, in which combined aricraft dynamics/flight control law and hydraulic actuation system dynamics of aircraft control surface are considered.

  • PDF

Design and Implementation of UAV's Autopilot Controller

  • Lee, Jeong-Hwan;Lee, Ki-Sung;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.52-56
    • /
    • 2004
  • Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft by inputted program in advance or artificial intelligence. In this study Aileron and Elevator are used to control the movement of airplane for horizontal and vertical flights about its longitudinal and lateral axis. In an introduction, the drone was linearly modeled by extracting aerodynamic parameter through flight test and simulation, lift and drag coefficient corresponding to angle of attack, changes of pitching moment coefficient. In the main subject, the flight simulation was performed after constructing hardware using TMS320F2812 from TI company and PID with lateral and longitudinal controller for horizontal and vertical flights. Flying characteristics of two system were estimated and compared through real flight test with hardware equipped algorithm and adaptive algorithm that was applied to consider external factors such as turbulence. In conclusion the control performance of the controller with proposed algorithm was streamlined at lateral and longitudinal controller respectively, we will discuss guidance command to pass way point.

  • PDF

Estimation of Ground Clutter Reflectivity based on the CFT(Captive Flight Test) (항공기 탑재 시험을 통한 지상 클러터 반사계수 추정)

  • Son, Chang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.87-95
    • /
    • 2006
  • The performance of a microwave missile seeker and radar operating in an air-to-air look-down mode is strongly influenced by the presence of ground clutter In order to correctly account for the effects of ground clutter, it is required to develop a model capable of representing clutter characteristics as a function of range and/or frequency. In this paper, a program to estimate the clutter reflectivity for various ground conditions is developed, using the actually measured data and the data available from open literatures. In addition, clutter characteristics measured for various ground conditions such as sea, agricultural area, urban city and industrial area through the captive flight tests are presented.

The Study on Antenna Performancet Test for Surion Radio Installation and Optimal Positioning (수리온 통신 안테나 장착 및 최적위치 선정을 위한 안테나 성능시험에 관한 연구)

  • No, Sangwan;Lee, Soonyoung;Kim, Minsoo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.122-129
    • /
    • 2020
  • Surion is required to install radios (U/VHF-AM, VHF-FM) capable of omni-directional communication. Therefore, this paper demonstrates the antenna performance test for the installation of the Surion communication antenna and the selection of optimal location. A simulation pattern analysis was performed employing the antenna, and a coupling test was performed by creating a new evaluation criterion. In addition, the results of the pattern flight test conducted at the previously suggested 1:20 turn and separation distance ratio were observed to be normal. However, the occurrence of voice cutoff was noted in the long-distance flight test. Therefore, in this paper, 1:300 (15 NM) is proposed as a new optimal ratio for predicting the long-distance flight test results in advance. Finally, the effectiveness of the proposed evaluation criteria was verified through long-distance flight tests. Consequently, it is expected to reduce the development schedule and cost by reducing the trial and error of the performance test for the Surion model. Also, the results of this study are expected to be used as standards for the installation of communication antenna and quality tests for other helicopters.

A Study on the design of Unmanned Autonomous Helicopter for Aerial Monitoring and Control of a Large Size Disaster and Forest Fire (대형재난 및 산불 공중지휘통제용 무인자율헬기 개발에 관한연구)

  • Kim, Jong-Kwon;Kwark, Ji-Hyun;Son, Bong-Sei
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.105-110
    • /
    • 2008
  • Unmanned helicopter has several abilities such as vertical take off, hovering, low speed flight at a specific altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance in the case of a large size disaster and forest fire. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the systematic design, electronic equipments and their interconnections for realizing the autonomous flight and aerial monitoring. A study on the autonomous waypoint navigation and altitude control performance were performed and tested on a test unmanned helicopter and the performance and the feasibility were represented.

  • PDF

Development of Helicopter Chassis Dynamometer System for the Scaled Helicopter Ground Test (축소 헬기 지상시험을 위한 헬리콥터 섀시다이나모미터 개발)

  • Kim, Ick-Tae;Kim, Jae-Soo
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2012
  • This paper developed Helicopter Chassis Dynamometer System(HCDS) to perform the bench test of the scaled rotor blade and to design a scaled model helicopter flight test bed and accomplished the scaled helicopter ground test. The scaled helicopter should be checked the relation of thrust and power input to maintain regular RPM by collective pitch angle versus throttle input. It showed hovering performance results of IGE with OGE, the max. F.M. was 0.76 without ground effect. The results of the chassis dynamometer test of scaled helicopter will usefully apply to design the scaled helicopter and evaluate the rotor blade performance.

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.

Performance verification methods of an inertial measurement unit in flight environment using the real time dual-navigation (실시간 다중항법을 이용한 관성측정기의 비행환경 성능 검증 기법)

  • Park, ByungSu;Lee, SangWoo;Jeong, Sang Mun;Han, KyungJun;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.36-45
    • /
    • 2017
  • Abstract It is necessary to verify the properties of an inertial measurement unit in the flight environment before applying to military applications. In this paper, we presented a new approach to verify an inertial measurement unit(IMU) in regard to the performance and the robustness in flight environments for the high-dynamics vehicle systems. We proposed two methods for verification of an IMU. We confirmed normal operation of an IMU and properties in flight environment by using direct comparison method. And we proposed real time multi-navigation system to complement the first method. The proposed method made it possible to compare navigation result at the same time. Therefore, it is easy to analyze the performance of an inertial navigation system and robustness during the vehicle flight. To verify the proposed method, we carried out a flight test as well as an experimental test of flight vibration on the ground. As a result of the experiment, we confirmed flight environment properties of an IMU. Therefore, we shows that the proposed method can serve the reliability improvement of IMU.