• 제목/요약/키워드: Flight control

검색결과 1,406건 처리시간 0.026초

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • 이장호;유혁;김재은;안이기;김응태
    • 항공우주기술
    • /
    • 제4권2호
    • /
    • pp.7-14
    • /
    • 2005
  • 본 논문은 군에서 운용중인 대공포 사격 훈련용으로 개발한 무인 표적기용 자동비행시스템 개발에 관한 논문이다. 조종사에 의해 수동으로 운용중인 표적기를 자동화함으로써 조종사 측면에서는 비행업무를 경감시키고, 군 측면에서는 사격훈련 예산절감이라는 장점을 가지게 된다. 현재까지 개발된 대부분의 UAV(Unmanned Aerial Vehicle)는 항공기 자세를 측정하기 위해 AHRS(Attitude & Heading Reference System)와 IMU(Inertial Measurement Unit)등의 고가의 센서를 장착하고 있지만 이를 장착하고 무인기를 사격훈련용으로 사용하기에는 비용절감이라는 목적에 적합하지 않다. 이에 본 논문은 저가의 센서를 장착하고 자동비행이 가능하도록 저가형 자동비행시스템을 개발하였으며, 비행시험을 통하여 자동비행시스템 성능을 입증하였다.

  • PDF

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권4호
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

A Study on Longitudinal Phugoid Mode Affected by Application of Nonlinear Control Laws

  • Kim, Chong-Sup;Hur, Gi-Bong;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2007
  • Relaxed Static Stability (RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. The T-50 advanced supersonic trainer employs the RSS concept in order to improve the aerodynamic performance. And the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 longitudinal control laws employ a proportional-plus-integral type controller based on a dynamic inversion method. The longitudinal dynamic modes consist of short period with high frequency and phugoid mode with low frequency. The design goal of longitudinal control law is optimization of short period damping ratio and frequency using Lower Order Equivalent System (LOES) complying the requirement of MIL-F-8785C. This paper addresses phugoid mode characteristics such as damping ratio and natural frequency that is affected by the nonlinear control laws such as angle of attack limiter, auto pitch attitude command system and autopilot of pitch attitude hold.

무인표적기용 저가형 자동비행시스템 개발 (Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone)

  • 이장호;유혁;김재은;안이기
    • 한국항행학회논문지
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 2004
  • 본 논문은 군에서 운용중인 대공포 사격 훈련용으로 개발한 무인 표적기용 자동비행시스템 개발에 관한 논문이다. 조종사에 의해 수동으로 운용중인 표적기를 자동화함으로써 조종사 측면에서는 비행업무를 경감시키고, 군 측면에서는 사격훈련 예산절감이라는 장점을 가지게 된다. 현재까지 개발된 대부분의 UAV(Unmanned Aerial Vehicle)는 항공기 자세를 측정하기 위해 AHRS(Attitude & Heading Reference System)와 IMU(Inertial Measurement Unit)등의 고가의 센서를 장착하고 있지만 이를 장착하고 무인기를 사격훈련용으로 사용하기에는 예산절감이라는 목적에 적합하지 않다. 이에 본 논문은 저가의 센서를 장착하고 자동비행이 가능하도록 저가형 자동비행시스템을 개발하였으며, 자동비행 컴퓨터를 포함한 센서, 전원모듈, 스위칭 모듈, 모니터링 모듈, RC 수신기를 하나의 모듈로 단일화하여 통합형 자동비행시스템을 개발하였다. 또한 비행시험을 통하여 자동비행시스템 성능을 입증하였다.

  • PDF

항공기 시뮬레이터 조종력 제어시스템의 견실 $\mu$-제어기 설계 (Robust $\mu$-Controller design for Control Loading System of Flight Simulator)

  • 방경호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.405-408
    • /
    • 1998
  • Generally, the principle function of simulator control loading system is to provide the pilot or student with the "feel" of the actual aircraft flight control systems during flight, taxing, and in malfunction. Flight control "feel" is the resistance felt by the pilot when moving a control stick or pedal, coupled with the amount of control surface deflection, and hence aircraft response, resulting from the input. Therefore, the control loading servo must be capable of performing to some general list of requirements derived from real aircraft control forces. In this paper, we deal with a $\mu-controller$ design for a control loading system of the flight simulator. For this, we derive a frequency response of the hydraulic system from the identification data and then design a controller using a $\mu-synthesis$ method. Under the same condition of simulation, $\mu-controller$ provides the superior performance than PID controller.than PID controller.

  • PDF

T-50 세로축 비행제어법칙 설계에 관한 연구 (A Study on the Longitudinal Flight Control Law of T-50)

  • 황병문;김성준;김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.963-969
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modem version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability, The T-50 longitudinal control laws employ the dynamic inversion and proportional-plus-integral control method. This paper details the design process of developing longitudinal control laws for the RSS aircraft, utilizing the requirement of MIL-F-8785C. In addition, This paper addresses the analysis of aircraft characteristics such as damping, natural frequency, gain and phase margin about state variables for longitudinal inner loop feedback design.

실시간 공력모델을 이용한 비행 시뮬레이션 연구 (Study of Flight Simulation using Real-Time Aerodynamic Model)

  • 이창호;박영민;최형식
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.

A Flight Control System design for an Unmanned Helicopter

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1375-1379
    • /
    • 2004
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small aerial vehicle is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the mechanical design, electronic equipments and their interconnections for acquiring autonomous flight. The design methodologies and performance of the helicopter were illustrated and verified with a linearized equation of motion. The LQG based estimator and controller was designed and tested for this unmanned helicopter.

  • PDF

소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발 (Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs)

  • 김성환;조상욱;조성범;박춘배
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.