• Title/Summary/Keyword: Flight Trajectory

Search Result 238, Processing Time 0.023 seconds

An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight (대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Je, So-Yeong;Park, Chan-Woo;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Ui-Chang;Je, Sang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.519-526
    • /
    • 2009
  • This paper describes a research result of a external shape optimization study to maximize the range of the guided missile with canards and tailfins in atmospheric flight. For this purpose, the external shape optimization program which can enhance the range of a missile was developed, incorporated with the trajectory analysis and the optimization technique. In the trajectory analysis part, Missile DATCOM which utilizes the semi-empirical method was directly connected to the trajectory code to supply the aerodynamic coefficients efficiently at every time step. In the gliding flight trajectory after apogee, a maximum $C_L/C_D$ trim condition calculation module was attached under the assumption of the missile continuously flying at maximum $C_L/C_D$ condition. In the optimization part, a Response Surface Method(RSM) was adopted to reduce the computing time.

Fusion Filter for the Trajectory and Instantaneous Impact Point Estimation of a Satellite Launch Vehicle (위성발사체 궤도 및 순간낙하점 추정을 위한 융합필터)

  • Ryu, Seong-Sook;Kim, Jeong-Rae;Song, Yong-Kyu;Ko, Jeong-Hwan;Sim, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.295-303
    • /
    • 2008
  • Malfunction of satellite launch vehicles with high speed and long range can be a major concern for operations. Flight safety system that monitor the trajectory and identify any failure of the launch vehicles. Tracking filters for the flight safety systems are different from common tracking filters since filter reliability is more emphasized than accuracy. Reliable estimation of instantaneous impact points requires reliable velocity estimates as well as reliable position estimates. A fusion filter for a flight safety system was developed with the tracking sensor models for the Korea Satellite Launch Vehicle I. The fusion filter performances were evaluated by analyzing the trajectory and instantaneous impact point estimates.

  • PDF

Reference Trajectory Generation of Flight Tests Using an Aircraft through Post-Processing of GPS Receiver Data (GPS 수신기 데이터의 후처리를 통한 항공기 비행시험 기준궤적 생성)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Shin, Yong-Sul;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2010
  • This paper deals with a post-processing of GPS receiver data in order to acquire a reference flight trajectory of an aircraft test. The flight test using an aircraft that is carried out several times since 2007 is the integrated test to verify the performance of the tracking and communications facilities in Naro Space Center and Jeju Tracking Center. In order to analyze performance of the tracking and navigation equipments, true reference data should be used for performance comparisons. Therefore off-the-shelf commercial GPS receiver, DL-V3 made by NovAtel Inc., is operated on the test to collect the GPS navigation data and the collected data is post-processed by GrafNav which is the off-the-shelf post-processing program made by NovAtel Inc. Through the post-processing of the collected data, a reference trajectory is generated with small error range about several decade centimeter level.

A Study on the Telemetering Results of KSR-III Flight Test (KSR-3 비행시험 원격측정시스템 운용 결과)

  • Lee, Sang-Rae;Lee, Soo-Jin;Kim, Sung-Wan;Lee, Jae-Deuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.96-101
    • /
    • 2003
  • Korea Sounding Rocket(KSR)-III onboard telemetry system has acquired various data from subsystems and sensors in the rocket, and radiated PCM/FM data using two S-band antennas during the flight. Simultaneously, it is necessary that the ground receiving systems track the rocket, and receive and decode telemetry data. Also post processed telemetry data are needed to be broadcasted on ethernet network in real time. Range safety display system displays flight trajectory using telemetry data in mission control center, and so flight manager makes a decision for flight termination from the trajectory This paper describes operating technique about telemetry reception, the development for the realtime data processing system, and the results for telemetering reception on fight test. We telemetered, processed, and broadcasted numerous telemetry data during the flight test successfully.

PREDICTION OF AERODYNAMIC HEATING ON A SUPERSONIC MISSILE (초음속 유도탄 공력가열 예측)

  • Sun, Chul;Ahn, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.134-137
    • /
    • 2007
  • Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.

  • PDF

Reference Trajectory Design for Atmosphere Re-entry of Transportation Mechanical Structure (수송기계구조물의 대기권 재진입 기준궤도 설계)

  • Park, J.H.;Eom, W.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.67-73
    • /
    • 2003
  • The entry guidance design involves trajectory optimization and generation of a drag acceleration profile as the satisfaction of trajectory conditions during the entry flight. The reference trajectory is parameterized and optimized as piecewise linear functions of the velocity. A regularization technique is employed to achieve desired properties of the optimal drag profile. The regularized problem has smoothness properties and the minimization of performance index then prevents the drag acceleration from varying too fast, thus eliminating discontinuities. This paper shows the trajectory control using the simple control law as well as the information of reference drag acceleration.

  • PDF

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

Aircraft 4D Trajectory Model for Air Traffic Control Simulator (항공교통관제 시뮬레이션을 위한 항공기 4D 궤적모델 개발)

  • Jung, Hyuntae;Lee, Keumjin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • This paper presents air traffic control simulation model for generating 4D trajectory, and aircraft dynamic model based on 4D trajectory information. With aircraft parameters from BADA and Total Energy Model, the trajectory is defined through modified Bezier curve and the simulation supports two aircraft control methods based on controlled time of arrival (CTA) or airspeed. The simulation results shown that flight time and path were almost identical to the defined trajectory, and derived the differences of each control methods according to wind conditions. Based on the simulation model developed in this study, it is expected to be applied to various air traffic management researches. Future studies will focus on applying optimization techniques in order to minimize the difference between generated trajectories and actual flight routes. This work will increase utilization of developed simulation futhermore.

Methods for Swing Recognition and Shuttle Cock's Trajectory Calculation in a Tangible Badminton Game (체감형 배드민턴 게임을 위한 스윙 인식과 셔틀콕 궤적 계산 방법)

  • Kim, Sangchul
    • Journal of Korea Game Society
    • /
    • v.14 no.2
    • /
    • pp.67-76
    • /
    • 2014
  • Recently there have been many interests on tangible sport games that can recognize the motions of players. In this paper, we propose essential technologies required for tangible games, which are methods for swing motion recognition and the calculation of shuttle cock's trajectory. When a user carries out a badminton swing while holding a smartphone with his hand, the motion signal generated by smartphone-embedded acceleration sensors is transformed into a feature vector through a Daubechies filter, and then its swing type is recognized using a k-NN based method. The method for swing motion presented herein provides an advantage in a way that a player can enjoy tangible games without purchasing a commercial motion controller. Since a badminton shuttle cock has a particular flight trajectory due to the nature of its shape, it is not easy to calculate the trajectory of the shuttle cock using simple physics rules about force and velocity. In this paper, we propose a method for calculating the flight trajectory of a badminton shuttle cock in which the wind effect is considered.

A Study on Effect Analysis of Trajectory-Based Arrival Management using Continuous Descent Operations (연속강하운용을 이용한 궤적 기반의 항공기 도착 관리 효과 분석 연구)

  • Eun-Mi Oh;Daekeun Jeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, we propose trajectory-based arrival management using CDO (Continuos Descent Operations). The operational procedures with TBO (Trajectory-Based Operations) concept were established to allow aircraft and ground system to share the trajectories with each other in real time. The proposed operational concept was validated in the air traffic control simulation environment, which consists of controller working position, pseudo pilot system, air traffic generation system, and controllers' decision support system for arrival management using CDO. Simulation results compared with actual flight data indicate that proposed concept could improve the efficiency of traffic flow management in terms of total descending time and fuel consumption. And it was confirmed that if there is a system that can share and utilize the synchronized trajectory, it can be helpful to control arrival aircraft and apply CDO concept.