• Title/Summary/Keyword: Flight Software

Search Result 358, Processing Time 0.025 seconds

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Flight Loads Analysis for Conceptual Study of the Regional Aircraft Wing Structure (중형항공기 주익 구조개발 선행연구를 위한 비행하중해석)

  • Shin, Jeong-Woo;Kang, Wang-gu;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.67-73
    • /
    • 2011
  • For loads analysis of airplane, applicable regulation should be determined. Then, loads conditions are prepared from the regulation. Modeling for aerodynamic, mass, and structure are performed. Panel method is usually adopted for aircraft loads analysis to obtain air loads. The ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by the KARI and TsAGI are used for loads analysis. The ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis for wing structural design of the regional aircraft at the conceptual design phase are performed with the ARGON. FAR 25 is used for the regulation for the load analysis. Shear force, bending moment and torsion diagrams for the wing and shear force and hinge moment for the aileron are presented.

A Study on Autonomous Indoor Flight using Computer Vision System and Smartphone (컴퓨터비전과 스마트폰을 활용한 실내 자동비행체에 관한 연구)

  • Choi, Young;Kim, Kye-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.353-358
    • /
    • 2013
  • In this paper, we present an implementation of indoor flight to navigate to the designated places capable of hands-off autonomous operation within indoor environments. Our flight requires computer vision technique and smartphone device to allow it to be flown indoors without high-performance sensors which are too expensive to commercialization. The experimental result show that proposed implementation is fairly meaningful in a general building.

Analysis and Design of the Automatic Flight Dynamics Operations For Geostationary Satellite Mission

  • Lee, Byoung-Sun;Hwang, Yoo-La;Park, Sang-Wook;Lee, Young-Ran;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.267-278
    • /
    • 2009
  • Automation of the key flight dynamics operations for the geostationary orbit satellite mission is analyzed and designed. The automation includes satellite orbit determination, orbit prediction, event prediction, and fuel accounting. An object-oriented analysis and design methodology is used for design of the automation system. Automation scenarios are investigated first and then the scenarios are allocated to use cases. Sequences of the use cases are diagramed. Then software components and graphical user interfaces are designed for automation. The automation will be applied to the Communication, Ocean, and Meteorology Satellite (COMS) flight dynamics system for daily routine operations.

A Trend Survey on Precision Positioning Technology for Drones (드론 정밀 측위 기술 동향)

  • J.H. Lee;J. Jeon;K. Han;Y. Cho;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 -)

  • Bae, Yeoung-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle (무인기용 이중화 비행조종컴퓨터의 고장관리 설계)

  • Oh, Taegeun;Yoon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.349-357
    • /
    • 2022
  • Since the flight control computer of unmanned aerial vehicle (UAV) is a flight critical equipment, it is necessary to ensure reliability and safety from the development step, and a redundancy-based fault management design is required in order to operate normally even a failure occurs. To reduce cost, weight and power consumption, the dual-redundant flight control system design is considered in UAV. However, there are various restrictions on the fault management design. In this paper, we propose the fault detection and isolation designs for the dual-redundant flight control computer to satisfy the safety requirements of an UAV. In addition, the flight control computer developed by applying the fault management design performed functional tests in the integrated test environment, and after performing FMET in the HILS, its reliability was verified through flight tests.

COTS Based Air Data Recording System for SmartUAV (상용 기성품에 기반한 스마트무인기 탑재자료저장장치)

  • Chang, Sung-Ho;Kim, Young-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • Air Data Recording System (ADRS) is the flight data recorder for the SmartUAV development. ADRS of the low cost designed for the SmartUAV has been developed and tested through the ground test. ADRS is the reconstructing data acquisition system and can be programmed automation controller. This paper focuses on the design aspects of the hardware and software. The hardware aspects of the ADRS include details about the hardware configurations for the interfaces with the Digital Flight Control Computer(DFCC) and sensors, components modifications. The software section describes the ADRS Operating System(OS) and data flow for archived files. Finally, ADRS-based results of the SmartUAV that include the Iron-bird test, system interface test and ground test are presented.