• Title/Summary/Keyword: Flight Safety System

Search Result 346, Processing Time 0.023 seconds

Multi-body Dynamics and Structural Vibration Analyses of Smart UAV Ground Test Equipment (스마트 무인기 지상시험장치의 다물체 동역학 및 구조진동해석)

  • Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Dong-Man;Choi, Hyun-Chul;Ahn, Oh-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, computational multi-body dynamics and structural vibration analyses including some impact condition have been conducted for the ground flight test system of the developed smart UAV model. Designed ground test system has four degree-of-freedom motions with limited motion control mechanism. Design safety margin designs for several structural components are tested and verified considering expected critical motions (pitching and rolling) of the test smart UAV model. Computational results for various analysis conditions are practically presented in detail. Futhermore, proper design modifications of the initially designed test equipment in order to guarantee or increase structural safety have been successfully conducted in the design stage.

Evaluation of Structural Integrity about Structural Design for Internal Components of Aircraft Engine (항공기 엔진 구성품 내부 구조 설계에 대한 구조 안전성 평가)

  • Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.58-62
    • /
    • 2023
  • In this work, the structural integrity was investigated of the structural design results of internal components for the aircraft engine. The radiator and intercooler were combined with the internal components of the engine. Therefore, the safety of the radiator and intercooler was investigated during flight conditions. The structural integrity was evaluated through structural analysis, using the finite element analysis method. The acceleration load for structural design and analysis was considered. The structural safety evaluation found the structural design results to be valid.

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.

A Way to Perform a Helicopter PFAT by KUH Case Study (KUH 사례를 통한 헬기 비행전 수락시험 수행 방안)

  • Lee, Sangmok;Hwang, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.994-1001
    • /
    • 2013
  • Process of helicopter development is divided in design, manufacture and test & evaluation phase. Test & evaluation is performed step by step in order of component test, rig test, system ground test and flight test. After completing ground test and before first flight, US military specification requires 50hrs-PFAT in order to assure flight safety. PFAT is the test which requires tie-down and severe load imposition and it needs special ground test vehicle which is similar to helicopter prototype as well as much cost and period. In case of KUH, we have performed tailored PFAT considering KUH development environment. In this paper, we propose a proper way to perform the PFAT in accordance with development environment by giving KHU PFAT procedure and result.

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.

Method Development for the Profiling Analysis of Endogenous Metabolites by Accurate-Mass Quadrupole Time-of-Flight(Q-TOF) LC/MS (LC/TOFMS를 이용한 생체시료의 내인성 대사체 분석법 개발)

  • Lee, In-Sun;Kim, Jin-Ho;Cho, Soo-Yeul;Shim, Sun-Bo;Park, Hye-Jin;Lee, Jin-Hee;Lee, Ji-Hyun;Hwang, In-Sun;Kim, Sung-Il;Lee, Jung-Hee;Cho, Su-Yeon;Choi, Don-Woong;Cho, Yang-Ha
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • Metabolomics aims at the comprehensive, qualitative and quantitative analysis of wide arrays of endogenous metabolites in biological samples. It has shown particular promise in the area of toxicology and drug development, functional genomics, system biology and clinical diagnosis. In this study, analytical technique of MS instrument with high resolution mass measurement, such as time-of-flight (TOF) was validated for the purpose of investigation of amino acids, sugars and fatty acids. Rat urine and serum samples were extracted by selected each solvent (50% acetonitrile, 100% acetonitrile, acetone, methanol, water, ether) extraction method. We determined the optimized liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) system and selected appropriated columns, mobile phases, fragment energy and collision energy, which could search 17 metabolites. The spectral data collected from LC/TOFMS were tested by ANOVA. Obtained with the use of LC/TOFMS technique, our results indicated that (1) MS and MS/MS parameters were optimized and most abundant product ion of each metabolite were selected to be monitorized; (2) with design of experiment analysis, methanol yielded the optimal extraction efficiency. Therefore, the results of this study are expected to be useful in the endogenous metabolite fields according to validated SOP for endogenous amino acids, sugars and fatty acids.

A Study on the Technique for Dynamic Firing Test of Propulsion System of Personal Surface to Air Missile (휴대용 대공 유도무기 추진시스템의 동적연소시험 기법 연구)

  • 김준엽;한태균;김인식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.19-28
    • /
    • 2000
  • In general the data such as thrust, pressure, temperature and combustion time are measured in developing the propulsion system of solid rocket motor through static firing test. But in the case of personal surface to air missile there are required a severe safety specifications in order to eliminate gunner hazard from the exhaust plume of motors. The safety requirements lead to the design of separation device and safety igniter device. The dynamic firing test for the designed two devices should be conducted under the flight environmental conditions to verify the requirements compliance. In this study the technique for dynamic firing test of propulsion system of personal surface to air missile is proposed and the method to design the dynamic test bench is also studied.

  • PDF

A Study of Telegraph Lever Control System for a ship Propulsion Thruster System Operation (선박 추진제어 운용을 위한 속도전달장치 구현에 관한 연구)

  • Kim, Jong-Duk;Kim, Jeong-Hwan;Kim, Ok-Soo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1965-1971
    • /
    • 2010
  • A ship propulsion thruster platform which is used by safety sailing takes charge of remote control of a main engine in ship. This system not only guarantees safety and reliable flight sailing but also require remote control technology of a ship. Accordingly, in this paper it deals with a telegraph lever control unit system which is a part of propulsion thruster system as localization technology. Also it makes sure of knowledge and core technology through analysis and designing and developing a telegraph lever control unit system. Moreover, it is sure of acquisition of base technology for integration of a ship propulsion thruster platform.

System Engineering Interfaces of Reliability Engineering in Development of Launch Vehicle (우주발사체 개발사업에서 신뢰성공학의 시스템엔지니어링 인터페이스)

  • Shin, Myoung Ho;Cho, Sang Yeon;Joh, Miok
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2006
  • Development of launch vehicle needs a large-scale and complicated System Engineering discipline interfacing to small-quantity production with special manufacturing processes. In general, the System Engineering discipline of launch vehicle has its relationship with Production, Operations, Product Assurance and Management disciplines and its internal partitions into the functions of System Engineering Integration & Control, Requirements Engineering, Analysis, Design and Configuration and Verification. As a function of Product Assurance, reliability of launch vehicle plays an significant role in risk management, system safety, flight safety and launch certification through design assurance. Moreover, major functions of systems engineering are integrated by means of reliability in the phases of design and verification. Therefore, derailed identification of system engineering interfaces of reliability, and execution of tasks for reliability assurance is required for successful development of launch vehicle. This paper identifies specific pattern and mechanism of the interfaces between reliability and system engineering.

  • PDF

Lever Arm Compensation of Reference Trajectory for Flight Performance Evaluation of DGPS/INS installed on Aircraft (항공기에 탑재된 DGPS/INS 복합항법 장치의 비행 시험 성능 평가를 위한 기준궤적의 Lever Arm 보정)

  • Park, Ji-Hee;Lee, Seong-Woo;Park, Deok-Bae;Shin, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1086-1092
    • /
    • 2012
  • It has been studied for DGPS/INS(Differential Global Positioning System/Inertial Navigation System) to offer the more precise and reliable navigation data with the aviation industry development. The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system, as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is performed by comparing between the DGPS/INS navigation data and reference trajectory which is more precise than DGPS/INS. The GPS receiver, which is capable of post-processed CDGPS(Carrier-phase DGPS) method, can be used as reference system. Generally, the DGPS/INS is estimated the CG(Center of Gravity) point of aircraft while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. For this reason, estimated error between DGPS/INS and reference system will include the error due to lever arm. In order to more precise performance evaluation, it is needed to compensate the lever arm. This paper presents procedure and result of flight test which includes lever arm compensation in order to verify reliability and performance of DGPS/INS more precisely.