• Title/Summary/Keyword: Flight Safety System

Search Result 340, Processing Time 0.023 seconds

The Operation of Flight Safety Center for KSLV-I Third Flight Test (KSLV-I 3차 비행시험에서의 비행안전통제실 운영)

  • Choi, Kyu-Sung;Sim, Hyung-Seok;Ko, Jeong-Hwan;Rho, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.182-188
    • /
    • 2013
  • This paper described flight safety center, flight safety information system(FSIS) and flight safety officer's mission and training in sequence and presented analysis's results and data processed in real-time during KSLV-I 3rd flight test. During flight safety center's operation for the 3rd flight test, monitoring of KSLV-I flight status was normally performed and the algorithms for flight safety calculations including the one for instantaneous impact point computations are also executed normally.

A Study on the Safety Management and Risk Assessment of the Certification Flight Test (인증비행시험 안전관리 및 위험도 평가기법 연구)

  • Choi, Joo-Won
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • Certification flight test is very risky and there are many hazards. Because the flight test is performed with the aircraft, that is safety and flight characteristics are not proven. And the test items and conditions are critical. If there is loss of aircraft during certification flight test, the certification program, development period can be delayed. Therefore, maintaining safety of the aircraft during flight test is very important. There are not much flight test experiences in Korea. However, developed nations has long history of flight test and experiences of flight test accidents. Based on these experiences, they has developed systematic management methods for the flight test safety. In this study, I would like to introduce safety management and risk assessment of the certification flight test.

Fusion Tracking Filter for Satellite Launch Vehicles (위성발사체 궤도추정을 위한 융합필터 연구)

  • Ryu, Seong Sook;Kim, Jeongrae;Song, Yong Kyu;Ko, Jeonghwan
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • The flight safety system for the satellite launch vehicles is required in order to minimize the risk due to launch vehicle failure. For prompt and reliable decision of flight termination, the flight safety system usually uses multiple sensors to estimate launch vehicle's flight trajectory. In that case, multiple types of observed tracking data makes it difficult to identify the flight termination condition. Therefore, a fusion tracking filter handling the multiple tracking data is necessary for the flight safety system. This research developed a simulation software for generating multiple types of launch vehicle tracking data, and then processed the data with fusion filters.

  • PDF

Flight Safety Operation for the 1st Flight Test of Naro(KSLV-I) (나로호(KSLV-I) 1차 비행시험 비행안전 운영)

  • Ko, Jeong-Hwan;Choi, Kyu-Sung;Sim, Hyung-Seok;Roh, Woong-Rae;Park, Jeong-Joo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.280-287
    • /
    • 2010
  • The first Korean satellite launch vehicle, KSLV-I(Korea Space Launch Vehicle-I), was launched for its first flight test on Aug. 25, 2009 from Naro Space Center located in south Jolla province. Because launch vehicles usually fly long range with large amount of propellants aboard, preparation of countermeasures against potential malfunctions during flight is essential in launch operation. In this paper, the flight safety operation, prepared to guarantee flight safety during launch operation of KSLV-I, is presented. Prior to flight test, flight safety analysis is performed to estimate associated risk levels quantitatively, and during flight, flight safety systems are operated to cope with any risky situations. Real-time flight monitoring including computation of instantaneous impact point using tracking data is executed normally and the flight test is completed without activation of flight termination system.

Study on Flight Test Practice of the Small Civil Airplane Development for Pitot-Static System's Error Identification (소형 항공기 개발 동정압계통 오차 확인 비행시험 사례)

  • Kim, Chanjo;Seo, Jihan;Lee, Wonjoong
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • The air data measured from the static pressure, the dynamic pressure and etc. of an airplane is used for calculation of many flight parameters(altitude and airspeed and so on) and these values applied to flight safety and navigation flight. The pitot-static system of the development airplane is calibrated by finding of pitot-static system's error using tower fly-by, trailing cone method and etc. This paper is describing for the introduction of the trailing cone method and major items for test planning, preparation, operation and results for air data calibration flight test performed, considering efficiency and safety during KC-100 development project.

A Study on Improvement of the Individual Pilot Quality Control System for Flight Safety (비행안전을 고려한 조종사 개인별 자질관리(IPQC)제도의 개선에 관한 연구)

  • 윤봉수;이성희
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.53-72
    • /
    • 1999
  • IPQC system was introduced for the flight safety at the age of scientific safety management in the 1980s. In spite of performing this system, aircraft accidents caused by human factors, which were above 70% among all flight accident factors, have not been reduced. Accordingly, throughout this paper I analyzed the aircraft accident factors by means of a literature study and a pilot survey. Then, based on the notion of TQC(Total Quality Control), I hierarchically classified Individual Quality into Capacity Management, Safety Management, and General Management and did the low-ranked management factors as well. AHP (Analytic Hierarchy Process), one of the scientific management methods, was used for estimating the relative importance of Individual Quality Control factors and the heavy aircraft accident causes over the last 20 years were analyzed according to the flight ranks. Based on the comparative analysis of results derived above, an IPQC model as flight ranks is established. In short, according to this newly suggested model we can obtain the maximum flight safety with the preventive actions against aircraft accidents caused by human factors and by improving the operation effect under the reasonable pilot management.

  • PDF

A Model of a Mechanical Flight-Control System for Simulating Control Authority Switching of a Helicopter Technical Demonstrator (헬리콥터 기술시범기의 비행제어 조종권 전환 모의를 위한 기계식 조종장치 모델 설계 연구)

  • Yang, Chang Deok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Since the flight-control system is critical for the safety of an aircraft, a fail-safe system is needed in a flight demonstrator used to test a new flight-control system. A backup control system is also needed to ensure safety in using a mechanical flight-control system. This paper presents a development of an MFCS (Mechanical Flight Control System) model for simulating control authority switching of a helicopter technical demonstrator, as well as the results of evaluating the developed MFCS model.

Development of Flight Safety Analysis System for Space Launch Vehicle (우주발사체 비행안전 분석시스템 개발)

  • Choi, Kyu-Sung;Ko, Jeong-Hwan;Sim, Hyung-Seok;Rho, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Flight safety analysis, which includes risk estimation for the various abnormal flight modes in addition to normal flight, has to be performed necessarily to guarantee launch safety for the operation of space launch vehicles. For this purpose, a dedicated system has been developed such that all the necessary repetitive computations, result reports, and graphical presentations can be performed inside a single system for user convenience. In addition, the developed system is capable of representing computed results on a three dimensional Earth for the realistic presentation. The developed Flight Safety Analysis System will be employed for the launch operation of Korea Satellite Launch Vehicle-I.

  • PDF

A Study on the Design of Software Switching Mechanism for Develops the Flight Control Law (제어법칙 개발을 위한 소프트웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Shin, Ji-Hwan;Park, Sang-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1130-1137
    • /
    • 2006
  • Relaxed Static Stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, the flight control systems are necessary to stabilizes the unstable aircraft and provides adequate handling qualities. The initial production flight control system are verified by flight test and it's always an elements of danger because of flight-critical nature of control law function and design error due to model base design method. These critical issues impact to flight safety, and it could be lead to a loss of aircraft and pilot's life. Therefore, development of an easily modifiable RFCS(Research Flight Control System) capable of reverting to a PFCS(Primary Flight Control System) of reliable control law must be developed to guarantee the flight safety. This paper addresses the concept of SSWM(Software Switching Mechanism) using the fader logic such as TFS(Transient Free Switch) based on T-50 flight control law. The result of the analysis based on non-real time simulation in-house software using SSWM reveals that the flight control system are switching between two computers without any problem.

A study of the threats towards the flight crew (민간항공사의 운항승무원에 영향을 주는 위협관리에 관한 연구)

  • Choi, Jin-Kook;Kim, Chil-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • The flight deck crew must manage complexity during daily flight operations. The Airline may obtain data regarding threats and errors through LOSA(Line Operations Safety Audits) on normal flights as predictive safety tool in Safety Management System of the Airline to actively improve the systems such as SOP(Standard Operation Procedure), training, evaluation and the TEM(Threat and Error Management) for the flight deck crew. The flight deck crew make errors when they fail managing threats. The crew mismanage around ten percent of threats and commit errors. The major mismanaged threats are aircraft malfunction, ATC(Air Traffic Communication), and wether threats. The effective countermeasures of TEM for manageing threats are leadership, workload management, monitor & cross check, Vigilance, communication environment and cooperation of the crew. It is important that organizations must monitor for the hazards of threats and improve system for the safer TEM environments.