• Title/Summary/Keyword: Flight Planning

Search Result 129, Processing Time 0.026 seconds

Design of the COMS Satellite Ground Control System (통신해양기상위성 관제시스템 설계)

  • Lee, Byeong-Seon;Jeong, Won-Chan;Lee, Sang-Uk;Lee, Jeom-Hun;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2006
  • As a multi-mission GEO satellite, COMS system is being developed jointly by KARI, ETRI, KORDI, KMA, and industries from both abroad and domestic. EADS ASRTIUM is the prime contractor for manufacturing the COMS. ETRI is developing the COMS Ka-band payload and SGCS with the fund from MIC. COMS Satellite Ground Control System (SGCS) will be the only system for monitor and control of the satellite in orbit. In order to fulfill the mission operations of the three payloads and spacecraft bus, COMS SGCS performs telemetry reception and processing, satellite tracking and ranging, command generation and transmission, satellite mission planning, flight dynamics operations, and satellite simulation, By the proper functional allocations, COMS SGCS is divided into five subsystems such as TTC, ROS, MPS, FDS, and CSS. In this paper, functional design of the COMS SGCS is described as five subsystems and the interfaces among the subsystems.

  • PDF

A Research on Knowledge Sharing among Air Transportation Professionals (이직종간 지식공유 활성화 방안에 대한 연구 : 항공운항 분야를 중심으로)

  • Kim, Wan-Hyun;Park, Sang-Bum
    • The Journal of Industrial Distribution & Business
    • /
    • v.8 no.6
    • /
    • pp.61-73
    • /
    • 2017
  • Purpose - Aviation control, navigation, and aircraft control in the air transportation area are very specialized. Each part is in progress for safety, efficiency, automation, and further. On the other hand co-work among each part including knowledge sharing has been inattentive for many reasons. The purpose of this research is to show how practicians and professionals in the air transportation area perceive the issue of knowledge sharing and to recall the necessity of knowledge sharing in the area. And we try to find ways to activate the knowledge sharing in the area. Research design, data, methodology - For the research, we inquired into whether practicians and professionals think knowledge sharing can effect safe aviation positively or not and what steps are necessary to activate knowledge sharing in the area. We adopted survey method using questionnaires for current practicians and interview for specialists. The survey and interview results were analyzed using regression analysis and AHP method. The interview for specialists and analyzing the results using AHP was to investigate what are the precedence factors to activate the knowledge sharing. Results - First, practicians perceive that knowledge sharing will affect aviation safe positively. Second objective knowledges such as, tower air traffic control procedure of aviation control area, flight principle and structure of aircraft control area, instrument landing system of navigation area, for knowledge sharing of each area were identified. Also the precedence factors such as, knowledge absorbability of personal factor, personal expectation of result of expectation factor, leadership of management of Structure factor, method of knowledge spread of application factor for knowledge sharing were found. Conclusions - Knowledge sharing for practicians and professionals in the aviation area is very important especially from the perspective of safety. However, for various many reasons including the environment of each special area that focusing on their own area, knowledge sharing has not been emphasized. We found that practicians in the area feel that knowledge sharing is necessary and helpful. For it, each practician's active participation is the most important and many ways such as chatting room to share knowledge are to be developed. And the organization culture should be changed to encourage knowledge sharing.

A High-speed Automatic Mapping System Based on a Multi-sensor Micro UAV System (멀티센서 초소형 무인항공기 기반의 고속 자동 매핑 시스템)

  • Jeon, Euiik;Choi, Kyoungah;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • We developed a micro UAV based rapid mapping system that provides geospatial information of target areas in a rapid and automatic way. Users can operate the system easily although they are inexperienced in UAV operation and photogrammetric processes. For the aerial data acquisition, we constructed a micro UAV system mounted with a digital camera, a GPS/IMU, and a control board for the sensor integration and synchronization. We also developed a flight planning software and data processing software for the generation of geo-spatial information. The processing software operates automatically with a high speed to perform data quality control, image matching, georeferencing, and orthoimage generation. With the system, we have generated individual ortho-images within 30 minutes from 57 images of 3cm resolution acquired from a target area of $400m{\times}300m$.

Improved Radial Sweep Algorithm for 3-dimensional Terrain Modelling (3차원 지형 모델링을 위한 개선된 Radial Sweep 알고리즘)

  • Ryoo, Seung-Taek;Ahn, Chung-Hyun;Yoon, Kyung-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.77-85
    • /
    • 1997
  • Researches in the field of Computer Graphics and Geographical Information Systems(GIS) have extensively studied the method of photo-realistic landscape modelling, because it have become a commom requirement in applications such as flight simulators, mission rehearsal, and construction planning. A common approach to the display of terrain uses a Digital Elevation Model(DEM). DEM is an evenly spaced array of the terrain elevation data and can be obtained from stereo satellite data. With the DEM data, the process of 3D terrain modelling consists of three steps. The first step is to extract the meaningful data (such as peak, pit, passes...) from DEM data based on LOD(Level Of Detail) criteria. The second is to construct the 3D surface by TIN, which represents a surface as a set of non-overlapping continuous triangular facets of irregular size and shape. The third is a rendering of 3D terrain model. The goal of this research is a construction of 3D terrain with TIN. To do this, we are going to app]y Radial Sweep Algorithm. Radial Sweep Algorithm for generating TIN works quickly and efficiently. However, it does not solve the problem caused by the approximated nature of triangulated surface. To solve this problem, this research derive improved radial sweep algorithms with the optimal triangle definition.

  • PDF

A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations (다수의 인공위성-지상국 간 통신 스케줄 최적화 모형)

  • Jeong, Eugine;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.

The Development of Helicopter Aviation Information System for Safe Flight (헬기의 안전운항을 위한 운항정보 시스템 개발)

  • Kang, Tae-Ho;Suh, Sung-Chul;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.131-136
    • /
    • 1995
  • In this paper, We explain the development of helicopter avation information system which provides the current location and other pre-saved informations in order to guarantee the safe aviation. The system we developed has the functions such as displaying digital map data and current location, route planning, displaying the rate of deviation, calculating and displaying the cross sectional view through the route and providing a real-time speed, heading and other informations. In this system, we use GPS to get the current location, made the 1:250,000 digital map to display the current location and made the cross sectional view from the DEM(Digital Elevation Mode)) data to help safe aviation. This system provides many kinds of route setting methods by using UTM coordinates, Lati. Longi, coordinates, database of heliport location, scanned map, etc., and displaying the heading and distance. Moreover, it also has a characteristic of providing a consistent user interface.

  • PDF

Dynamic Object Tracking of a Quad-rotor with Image Processing and an Extended Kalman Filter (영상처리와 확장칼만필터를 이용한 쿼드로터의 동적 물체 추종)

  • Kim, Ki-jung;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.641-647
    • /
    • 2015
  • This paper proposes a new strategy for a quad-rotor to track a moving object efficiently by using image processing and an extended Kalman filter. The goal of path planning for the quad-rotor is to design an optimal path from the start point to the destination point. To lengthen the freight time of the quad-rotor, an optimal path is required to reduce the energy consumption. To track a moving object, the mark signed on the moving object has been detected by a camera mounted first on the quad-rotor. The center coordinates of the mark and its area are calculated through the blob analysis which is one type of image processing. The mark coordinates are utilized to obtain information on the motion direction and the area of the mark is utilized to recognize whether the object moves backward or forward from the camera on the quad-rotor. In addition, an extended Kalman filter has been applied to predict the direction and speed of the dynamically moving object. Through these schemes, it is aimed that the quad-rotor can track the dynamic object efficiently in terms of flight distance and time. Through the two different route freights of the quad-rotor, the performance of the proposed system has been demonstrated.

Proposal of Detection Module for Fighter Aircraft Data Modulation Attack (전투기 데이터 변조 공격행위에 대한 탐지모듈 제안)

  • Hong, Byoung-jin;Kim, Wan-ju;Kim, Ho-keun;Lim, Jae-sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.5-16
    • /
    • 2019
  • Modern state-of-the-art military aviation assets are operated with independent embedded real-time operating systems(RTOS). These embedded systems are made with a high level of information assurance. However, once the systems are introduced and installed on individual platforms for sustaining operational employment, the systems are not actively managed and as a result the platforms become exposed to serious threats. In this paper, we analyzed vulnerability factors in the processing of mission planning data and maintenance-related data for fighter aircraft. We defined the method and form of cyber attacks that modulate air data using these vulnerabilities. We then proposed a detection module for integrity detection. The designed module can preemptively respond to potential cyber threats targeting high - value aviation assets by checking and preemptively responding to malware infection during flight data processing of fighter aircraft.

PollMap: a software for crop pollination mapping in agricultural landscapes

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang;Pirlar, Maghsoud Arshadi;Jahanbakhshian, Mohammad Mehdi
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Background: Ecosystem service mapping is an important tool for decision-making in landscape planning and natural resource management. Today, pollination service mapping is based on the Lonsdorf model (InVEST software) that determines the availability of nesting and floral resources for each land cover and estimates pollination according to the foraging range of the desired species. However, it is argued that the Lonsdorf model has significant limitations in estimating pollination in a landscape that can affect the results of this model. Results: This paper presents a free software, named PollMap, that does not have the limitations of the Lonsdorf model. PollMap estimates the pollination service according to a modified version of the Lonsdorf model and assumes that only cells within the flight range of bees are important in the pollination mapping. This software is produced for estimating and mapping crop pollination in agricultural landscapes. The main assumption of this software is that in the agricultural landscapes, which are dominated by forest and agriculture ecosystems, forest patches serve only as a nesting habitat for wild bees and the surrounding fields provide floral resources. Conclusion: The present study provided new software for mapping crop pollination in agricultural landscapes that does not have the limitations of the Lonsdorf model. We showed that the use of the Lonsdorf model for pollination mapping requires attention to the limitations of this model, and by removing these limitations, we will need new software to obtain a reliable mapping of pollination in agricultural landscapes.

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.