• Title/Summary/Keyword: Flight Operation System

Search Result 362, Processing Time 0.025 seconds

Development of the System Controller for the Airborne Small SAR (KOMSAR) (항공기탑재 소형 영상레이더 (KOMSAR) 시스템 제어기 개발)

  • Hwang, Yong-Chul;Lee, Cheol-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.86-92
    • /
    • 2005
  • Synthetic Aperture Radar is an active sensor utilizing the microwaves in order to get the requested high resolution imageries day or night regardless of the weather conditions. In this paper, the architecture of a real-time system controller for the airborne small SAR system, KOrea Miniature SAR which was developed by Agency for Defense Development is proposed considering the embedded real-time environment. The main purpose of the system controller is to control the internal and the rest of subsystem within SAR system in real-time. The main characteristics of the proposed system controller were implemented using the real-time operating system and the distributed hardware architecture for the small, low weight and real-time operation. The system controller performance and real-time operation were verified and confirmed by the demo flight with the KT-1 airplane.

A Study on the Observer Training and Implementation for Effective Normal Operation Safety Survey (NOSS)

  • Choi, Jin-Kook;Choi, Se-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.111-116
    • /
    • 2021
  • Normal Operation Safety Survey (NOSS) is a safety management tool used by air traffic control organizations to measure data related to threats and errors to proactively prevent accidents before they occur. NOSS was developed to be applied to the air traffic control field according to the concept of Line Operation Safety Audit (LOSA) conducted by airlines to reduce human errors in the cockpits. Safety management based on data is crucial for the prevention of control-related accidents, and the competency of observers for this is important for the successful implementation of NOSS. Based on LOSA implementation experiences and expert interviews, this paper introduces the international NOSS methods and discusses the key factors required for effective observation and the implementation methods and implications of NOSS observer training.

Design, Implementation, and Validation of KOMPSAT-2 Software Simulator

  • Lee, Sang-Uk;Lee, Byoung-Sun;Kim, Jae-Hoon;Cho, Sung-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.140-152
    • /
    • 2005
  • In this paper, we present design features, implementation, and validation of a satellite simulator subsystem for the Korea Multi-Purpose Satellite-2 (KOMPSAT-2). The satellite simulator subsystem is implemented on a personal computer to minimize costs and trouble on embedding onboard flight software into the simulator. An object-oriented design methodology is employed to maximize software reusability. Also, instead of a high-cost commercial database, XML is used for the manipulation of spacecraft characteristics data, telecommand, telemetry, and simulation data. The KOMPSAT-2 satellite simulator subsystem is validated by various simulations for autonomous onboard launch and early orbit phase operations, anomaly operation, and science fine mode operation. It is also officially verified by successfully passing various tests such as the satellite simulator subsystem test, mission control element system integration test, interface test, site installation test, and acceptance test.

  • PDF

Propellant Consumption Estimation of Reaction Control System During Flight of KSLV-II (한국형발사체 추력기 자세제어시스템 비행 중 추진제 소모량 추정식)

  • Kang, Shin-jae;Oh, Sang-gwan;Yoon, Won-jae;Min, Byeong-joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.529-536
    • /
    • 2020
  • Reaction Control System of the third stage of the Korean Space Launch Vehicle II conducts roll control and 3 axis control throughout third stage engine start, satellite separation, and collision and contamination avoidance maneuver. Reaction control system consumes its propellant in each thruster operation. Hence, loading of proper amount of the propellant is important for mission success. It is needed to have a rough estimation method of propellant consumption during the flight. In this paper, we developed a energy equation using pressure and temperature data which are acquired in the on-board reaction control system. We constructed a test system which is similar with the on-board reaction control system to verify the energy equation. Test results using deionized water were compared with estimated propellant consumption. We also conducted an error analysis of the energy equation. We also presented the propellant consumption result of a system level operation test.

Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV) (무인항공기용 150W급 연료전지 동력원 개발 및 실증)

  • Yang, Cheol-Nam;Kim, Yang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Long endurance is a key issue in the application of unmanned aerial vehicles. This study presents feasibility test results when fuel cell system as an alternative to the conventional engine is applied for the power of the UAV after the 150W fuel cell system is developed and packaged to the 1/4 scale super cub airplane. Fuel cell system is operated by dead-end method in the anode part and periodically purged to remove the water droplet in flow field during the operation. Oxygen in the air is supplied to the stack by the two air blowers. And fuel cell stack is water cooled by cooling circuit to dissipate the heat generated during the fuel cell operation. Weight balance is considered to integrate the stack and balance of plant (BOP) in package layout. In flight performance test, we demonstrated 4 times standalone take-off and landing. In the laboratory test simulating the flight condition to quantify the energy flow, the system is analyzed in detail. Sankey diagram shows that electric efficiency of the fuel cell system is 39.2%, heat loss 50.1%, parasitic loss 8.96%, and unreacted purged gas 1.67%, respectively compared to the total hydrogen input energy. Feasibility test results show that fuel cell system is high efficient and appropriate for the power of UAV.

Concept design of Multi-Drone Ground Control System for Forest Disaster Prevention (산림 방재용 다중 드론 지상통제장치 개념 설계)

  • Kim, Gyou-Beom;Oh, Ju-Youn
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.273-277
    • /
    • 2018
  • In the field of forest disaster prevention, drones are expected to save higher human resources than the existing manpower has, and produce high-efficiency results over time. However, operational limitations brought by short flight times have brought the environment of limited use of the various capabilities of the drone, and the existing development systems operating the multi-drone are mainly for performance purpose, so it is a difficult to use for forest disaster prevention. The purpose of this paper is to design the concept based on multi-drone operation procedure through analysis of mission of ground control system for forest disaster prevention.

Unstable Approach Mitigation Based on Flight Data Analysis (비행 데이터 분석 기반의 불안정 접근 경감방안)

  • Kim, Hyeon Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.52-59
    • /
    • 2021
  • According to the International Air Transport Association (IATA), 61% of the accidents occurred during the approach and landing phase of the flight, with 16% of the accidents caused by unstable access of the commercial aircraft. It was identified that the pilot's unstable approach and poor manipulation of correction led to accidents by continuing the excessive approach without go-around manuever. The causes of unstable access may vary, including airport approach procedures, pilot error, misplanning, workload, ATC (Air Traffic Contol) congestion, etc. In this study, we use the flight data analysis system to select domestic case airports and aircraft type where unstable approach events occur repeatedly. Through flight data analysis, including main events, airport approach procedures, pilot operations, as well as various environmental factors such as weather and geographical conditions at the airport. It aims to identify and eliminate the tendency of unstable approach events and the causes and risks of them to derive implications for mitigating unstable approach events and for developing navigation safety measures.

Experimental Verification on the Extending Flight Time of Solar Paper for Drone using Battery for Electric Vehicles (장기 체공 태양광 드론의 비행시간 연장에 관한 실험적 검증)

  • Wooram Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.229-235
    • /
    • 2023
  • Recently, for drones to be used for agricultural applications, it is necessary to increase the payload and extending flight time. Currently, the payload and extending flight time are limited by the battery technology for solar paper drone. In addition, charging or replacing the batteries may be a practical solution at the field that requires near continuous operation. In this paper, the procedure to optimize the main power system of an electric hybrid drone that consists of a battery and electric motor is presented. As a result, the solar paper drone flied successfully for 2-3%. The developed solar paper drone consumes and average of 55W when cruising and can receive up to 25W of energy during the day, and its extending flight time was verified through flight tests.

Application of the Small UAV Defense System (무인항공기 대응체계 도입 방안)

  • Park, Jehong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.145-152
    • /
    • 2017
  • As a popularization of small UAS to have improved flight performance and easiness of controlling, the UAS industry is increased and also small UAS is to be a new threat for airspace security of national strategic infrastructure. Rising the new threat makes the negative side effect of small UAS operation. This phenomena brought to new R&D needs "defense system" for small UAS/UAV - called Anti-Drone. The paper addressed case study of defects, accidents and threats by small UAS/UAV as world wide level, and research and development trend of UAS defense system as each technical category - CONOP (Concept of Operation), identification/recognition method and control/supremacy techniques. As a result, this suggests the direction what and where drone defense system should be applied first and required for Korean society in the view of society system (regime) and a point of view for minimizing side effect as UAS popularization.

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF