• 제목/요약/키워드: Flight Operation

검색결과 641건 처리시간 0.024초

복수 무인기 네트워크 통합 운영 시스템 개발 (Development of Operation System for Network of Multiple UAVs)

  • 김성환;조상욱;김성수;유창경;최기영
    • 한국항공우주학회지
    • /
    • 제39권11호
    • /
    • pp.1042-1051
    • /
    • 2011
  • 본 논문에서는 복수 무인기의 편대 비행을 위한 탑재 무선 통신 및 임무통제 네트워크 (지상관제시스템)를 포함하는 통합 운영 시스템의 구성 방안을 제시한다. 이를 위해 편대비행을 위한 무인기에 탑재되는 시스템들의 구성 형태에 따라 다양한 운영 시스템들을 분류하였다. 또한 각각의 운영 시스템에 대한 장단점 및 고장에 대한 신뢰성을 파악하였다. 이 결과를 바탕으로 편대기의 임무비행을 수행하는데 있어 적절한 운영 시스템의 형태를 결정하고 구성 요소들을 개발하였다. 제안된 운영 시스템을 이용하면, 이종의 비행체로 편대를 구성할 수 있으며, 복잡한 임무를 여러 무인기에 나누어 수행 가능하고, 단일 임무의 협업 또는 다양한 임무의 동시 수행이 가능하다.

크러시스위치 조립체의 작동신뢰성 확인을 위한 M&S와 시험 결과 비교 (M&S and Experimental Comparison of Crush Switch Assembly for Operation Validation)

  • 김민겸;정명숙;엄원영;장준용
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.229-236
    • /
    • 2020
  • A crush switch assembly(CSA) connected to an impact fuze provides electrical signal for detonation of the loaded main charge when an impact with the target is detected. Because the CSA experiences continuous changes in flight environment such as changes in velocity, vibration, and stresses, it is necessary to accurately predict the behavior of the fuze to maintain functionality during flight and to detonate when necessary. In this paper, random vibration analysis for flight environment and impact analysis on target hit are performed using FEA. Then, high speed impact tests are performed with the original and scaled down models to ensure operation validation of the manufactured products. The test results are then compared with M&S results to verify the capability of currently modeled CSA.

최저비행고도와 UAS 운영제한고도 구축에 관한 연구 (A Study on the Establishment of Minimum Safe Altitude and UAS Operating Limitations)

  • 김도현;이동진
    • 한국항공운항학회지
    • /
    • 제29권2호
    • /
    • pp.94-99
    • /
    • 2021
  • UTM is an air traffic management ecosystem under development for autonomously controlled operations of UAS by the FAA, NASA, other federal partner agencies, and industry. They are collaboratively exploring concepts of operation, data exchange requirements, and a supporting framework to enable multiple UAS operations beyond visual line-of-sight at altitudes under AGL 500ft in airspace where air traffic services are not provided. Minimum Safe Altitude is a generic expression, used in various cases to denote an altitude below which it is unsafe to fly owing to presence of terrain or obstacles. The European drone regulation mentions that the UAS is maintained within 120 metres from the closest point of the surface of the earth during flight, except when overflying an obstacle. This study attempted to develop a minimum flight altitude database system. Based on domestic and international rules and regulations on setting the minimum flight altitude it is expected that it can be applied to the operation of aircraft and unmanned aerial system in UTM environments for specific area in Korea.

PSTR 기반의 Fault Tolerant Architecture (Fault Tolerant Architecture based on PSTR in Flight Control System)

  • 김준영;이근수;김두현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.79-80
    • /
    • 2009
  • 최근 UAV(Unmanned Aerial Vehicle)의 OFP(Operation Flight Program)에 대한 많은 연구가 진행되고 있다. UAV의 OFP는 경성 소프트웨어 일종으로 Time deadline과 수많은 요인으로 인한 Fault에 대하여 소프트웨어의 높은 신뢰성이 요구가 된다. 본 논문에서는 UAV의 OFP에 대하여 STR(Primary-Shadow TMO replication)기반의 fault tolerant Architecture에 대하여 제안을 한다.

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

  • Lee, Jaewon;Park, Inchun;Kim, Junsik;Lee, Jaejin;Hwang, Junga;Kim, Young-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.33-39
    • /
    • 2014
  • This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a high-altitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of $15.27{\mu}Sv$) of aircrew at the high-altitude are an order of magnitude larger than those (an average of $0.30{\mu}Sv$) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC-800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템 (Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle))

  • 오상헌;이상정;박찬식;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

On-Line Aircraft Parameter Identification Using Fourier Transform Regression With an Application to NASA F/A-18 Harv Flight Data

  • Song, Yongkyu;Song, Byungheum;Seanor, Brad;Napolitano, Marcello R.
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.327-337
    • /
    • 2002
  • This paper applies a recently developed on-line parameter identification (PID) technique to sets of real flight data and compares the results with those of a state-of-the-art off-line PID technique. The on-line PID technique takes Linear Regression from Fourier Transformed equations and the off-line PID is based on the traditional Maximum Likelihood method. Sets of flight data from the NASA F/A-18 High Alpha research Vehicle (HARV) circraft, which has been recorded from specifically designed maneuvers and used for our line parameter estimation, are used for this study. The emphasis is given on the accuracy and on-line measure of reliability of the estimates. The comparison is performed for both longitudinal and lateral-directional dynamics for maneuvers at angles of attack ranging u=20°through $\alpha$=40°. Results of the two estimation processes are also compared with baseline wind tunnel estimates whenever possible.

Membrane Inlet-based Portable Time-of-flight Mass Spectrometer for Analysis of Air Samples

  • Kim, Tae-Kyu;Jung, Kyung-Hoon;Yoo, Seung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.303-308
    • /
    • 2005
  • A miniaturized time-of-flight mass spectrometer with an electron impact ionization source and sheet membrane introduction has been developed. The advantages and features of this mass spectrometer include high sensitivity, simple structure, low cost, compact volume with field portability, and ease of operation. A mass resolution of 400 at m/z 78 has been obtained with a 25 cm flight path length. Under optimized conditions, the detection limits for the volatile organic compounds (VOCs) studied were 0.2-10 ppm by volume with linear dynamic ranges greater than three orders of magnitude. The response times for various VOCs using a silicone membrane of 127 $\mu$m thickness were in the range 4.5-20 s, which provides a sample analysis time of less than 1 minute. These results indicate that the membrane introduction/time-of-flight mass spectrometer will be useful for a wide range of field applications, particularly for environmental monitoring.

주파수 영역 기반 쿼드로터 무인기 운동 모델 식별 (Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach)

  • 정성구;김성욱;정연득;김응태
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.