• Title/Summary/Keyword: Flight Motion System

Search Result 115, Processing Time 0.026 seconds

SAR Motion Compensation Using GPS/IMU (GPS/IMU를 이용한 SAR 영상의 요동 보상 기법에 대한 연구)

  • Kim, Dong-Hyun;Park, Sang-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • This paper suggests a motion compensation technique using GPS/IMU data in order to compensate for phase error caused by undesired motion of radar platform. An actual flight trajectory would be deviate from an ideal straight-constant trajectory with a constant velocity for SAR imaging, due to pitch, roll and yaw motion of aircraft caused by turbulence. This leads to blurred SAR images due to inter-pulse phase errors as well as along-track velocity errors. If the motion compensation is carried out to reduce those errors, SAR image quality can be significantly improved. Simulation results show that the motion compensation technique introduced in this paper is an effective tool to improve SAR image quality against severe motion of radar platform.

Research on the Design of Helicopter Nonlinear Optimal Controller using SDRE Technique (SDRE 기법을 이용한 헬리콥터 비선형 최적제어기 설계 연구)

  • Yang, Chang-Deok;Kim, Min-Jae;Lee, Jung-Hwan;Hong, Ji-Seung;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1152-1162
    • /
    • 2008
  • This paper deals with the State-Dependent Riccati Equation (SDRE) technique for the design of helicopter nonlinear flight controllers. Since the SDRE controller requires a linear system-like structure for nonlinear motion equations, a state-dependent coefficient (SDC) factorization technique is developed in order to derive the conforming structure from a general nonlinear helicopter dynamic model. Also on-line numerical methods of solving the algebraic Riccati equation are investigated to improve the numerical efficiency in designing the SDRE controllers. The proposed method is applied to trajectory tracking problems of the helicopter and computational tips for a real time application are proposed using a high fidelity rotorcraft mathematical model.

Heel Trajectory Analysis Method of Walking using a Wearable Sensor (착용형 센서를 이용한 보행 뒤꿈치 궤적 분석 방법)

  • Hee-Chan Kim;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.731-736
    • /
    • 2023
  • Walking is a periodic motion that contains specific phases and is a basic movement method for humans. Through gait analysis, various musculoskeletal health conditions can be identified. In this study, we propose a calf wearable sensor system that can perform gait analysis without space limitations. Using a ToF(: Time-of-Flight) sensor that measures distance and an IMU(: Inertial Measurement Unit) sensor that measures inclination the heel trajectory of walking was derived by proposed method. In case of abnormal gait with risk of fall, gait is evaluated by analyzing the change pattern of the heel trajectory.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Study on Non-linear Error Effect of Three Dimensional Control Surface Linkage Using Kinematic Analysis (3차원 조종면 변위센서 링크의 운동학적 해석을 통한 비선형 오차 영향 연구)

  • Lee, Sug-Chon;Kim, Jae-Eun;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • It is very important to correctly set control surface linkage. But a lot of bad setting case has been seen in especially remote controled airplanes and middle size UAVs. In this paper, a three dimensional linkage from control surface to deflection sensor was analyzed kinematically and a position analysis was simulated using algebraic algorithm in terms of nonlinear error of deflection angle. Three correct settings of the linkage came out of this research. One is two-dimensional motion, another is link ratio of 1 and the other is that effective lever of the control surface should be perpendicular to a pushrod in their neutral position.

Multi-body Dynamics and Structural Vibration Analyses of Smart UAV Ground Test Equipment (스마트 무인기 지상시험장치의 다물체 동역학 및 구조진동해석)

  • Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Dong-Man;Choi, Hyun-Chul;Ahn, Oh-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, computational multi-body dynamics and structural vibration analyses including some impact condition have been conducted for the ground flight test system of the developed smart UAV model. Designed ground test system has four degree-of-freedom motions with limited motion control mechanism. Design safety margin designs for several structural components are tested and verified considering expected critical motions (pitching and rolling) of the test smart UAV model. Computational results for various analysis conditions are practically presented in detail. Futhermore, proper design modifications of the initially designed test equipment in order to guarantee or increase structural safety have been successfully conducted in the design stage.

Development of the integrated management simulation system for the target correction (표적 수정이 가능한 사용자 개입 통합 관리 모의 시스템 개발)

  • Park, Woosung;Oh, TaeWon;Park, TaeHyun;Lee, YongWon;Kim, Kibum;Kwon, Kijeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.600-609
    • /
    • 2017
  • We designed a target management integration system that enables us to select the final target manually or automatically from seeker's sensor image. The integrated system was developed separately for the air vehicle system and the ground system. The air vehicle system simulates the motion dynamics and the sensor image of the air vehicle, and the ground system is composed of the target template image module and the ground control center module. The flight maneuver of the air vehicle is based on pseudo 6-degree of freedom motion equation and the proportional navigation guidance. The sensor image module was developed using the known infrared(IR) image rendering method, and was verified by comparing the rendered image to that of a commercial software. The ground control center module includes an user interface that can display as much information to meet user needs. Finally, we verified the integrated system with simulated impact target mission of the air vehicle, by confirming the final target change and the shot down result of the user's intervention.

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

A Study on the Practical Use of Human Alertness for Flight Safety Program (비행안전 프로그램으로서의 생체 활성도 활용방안 연구)

  • Lee, Dal-Ho;Choe, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.13-22
    • /
    • 1998
  • Aircraft and the three-dimensional environment in which they operate are not user-friendly for human beings. As a result, maintaining the proficiencies necessary to safely and efficiently fly an airplane are difficult, and costly. The physiological and emotional status of the human element remains crucial in maintaining safe performance by all crew members. In the study of Hagiwara et al.(1993). they called the physiological and emotional status of the human element into the human alertness or physiological activity and stress, fatigue, circadian rhythm, alcohol. smoking, and self-medication are known the major factors that deteriorate the human alertness. Accordingly. this paper deals with the quantitative and objective performance test based on tracking error and reaction time by means of the new computer test program into which the perception-motion system of human beings is applied. Throughout this experiment using performance test, the results suggest that performance capability in state of sleep deprivation 2 hours and alcoholic 0.05~0.06% in blood were more impaired than one in a normal state, and they further showed statistically significant differences between them, which were influenced by impairment factors of body regulation and pilot's grade. We also obtained the prediction value and the 95% confidence interval of tracking error and reaction time at the normal state for the purpose of distinguishing performance capability between the normal state and the abnormal state. And it is expected that the evaluation of human alertness using performance test will be applied to the quantitative assessment of an each pilot's realistic consciousness/attention, and will lead a flight commander to the accurate decision of mission approval prior to a flight.

  • PDF