• Title/Summary/Keyword: Flight Motion System

Search Result 115, Processing Time 0.024 seconds

Development of Motion-Based Helicopter Flight Simulation Training Device (모션 기반 헬리콥터 시뮬레이터 개발 연구)

  • Na, Yuchan;Cho, Youngjin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.477-483
    • /
    • 2022
  • A flight simulator is a device that allows pilots attain proficiency of various situations and a sense of flight, and as interest in scientific training increases in modern aviation, aviation training organization develop and operate simulators. Therefore, in this study, the process of developing a motion-based helicopter simulation Training Device using a commercial program. Citing previous studies, the specificity of helicopter flight education and the positive effect of motion simulators were confirmed. In addition, the design and program of the motion device were studied in the process of checking the configuration and current regulations of flight simulation training devices and developing a helicopter motion simulator. A motion program was set based on the system design and structural design of the flight simulator, and data received from the flight simulator was identified to confirm the expected operating shape. Through this study, we intend to create a positive expected effect on pilot training by completing a motion-based helicopter simulator.

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

A Real Time HILS of the Guidance Flight System (시선지령 유도 비행체의 실시간 실물 시뮬레이션 기법)

  • 김영주;이종하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.638-647
    • /
    • 1994
  • This paper describes the real time Hardware-In-the Loop Simulation(HILS) that is an efective tool for design, testing and performance evaluation of the guidanc eflight system. The real time HILS was performed by using a 3-axis flight motion simulator, real time computer, I/O system and flight control system hardware along with the assumed flight trajectory of the guidance flight system. Also, we proved the validity of the real time HILS is the guidance flight system by comparing its simulation results with the software simulation data and telemetry data.

A Study on the Development of Flight Simulator Training Device for the Prevention of Helicopter Flight Spatial Disorientation (헬리콥터 비행착각 예방을 위한 모의비행훈련장치 개발에 대한 연구)

  • Se-Hoon Yim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Vertigo refers to a state in which awareness related to the location, posture, movement, etc. of a helicopter is insufficient in space. It is easy to fall into flight illusion when flying in dense fog or night flight, and even if it has a wide field of view, it can be caused by visual causes such as cloud shapes, wind conditions, conditions of ground objects, and sensory causes such as changes in air posture or gravitational acceleration. The design and program of the motion system are studied that applied a six-axis motion system to a conventional commercial flight simulator program for pilot training, depending on the specificity of helicopter flight training that requires perception and sensitivity. Using the motion-based helicopter simulator produced in this study to train pilots, it is expected to have a positive effect in prevent of vertigo, where high performance could not be confirmed in the previously used visual-based simulation training device.

Estimation and Validation of Longitudinal Stability/Control Derivatives for the Flight Training Device of a Light Aircraft

  • Lee, Jung Hoon
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • The longitudinal flight parameters of a light airplane are estimated from flight test data by use of the output error method. The reliability of the flight test measurement is examined in engineering judgment, scatter and Cramer-Rao bound, which turns out to be satisfactory with minor defects. Estimated parameter values are validated by comparing the simulated responses with the ones from actual flight tests. The FTD(Flight Training Device) of a light airplane turns out to satisfy the qualification of FAA Level 5 FTD in longitudinal motion. All the necessary practices for generation of high-fidelity data in longitudinal motion of a light aircraft are successfully performed in this study.

A Study on the HWIL Simulation System of the Flight Object including Inertial Navigation System (관성항법장치가 포함된 비행체의 HWIL 시뮬레이션 시스템 개발 연구)

  • Lee, Ayeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.349-360
    • /
    • 2018
  • This paper proposes various methods for constructing a HWIL simulation system including Inertial Navigation System(INS) and Guidance Control Unit(GCU) under the assumption that the INS identifies the initial attitude of an aviation body through its own alignment and that it is a package consisting of an inertial sensor and a navigation computation module. This paper also presents a real-time computing technology and a way to calculate the command of the Flight Motion System(FMS) analogous to the acutal flight environment. The proposed HWIL simulation system is constructed by applying the above-mentioned methods and the results of running a series of simulations confirm high effectiveness and usefulness of the system. Finally, minor error factors that could be acquired only in HWIL simulation Environment are analyzed.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Development of an intuitive motion-based drone controller (직관적 제어가 가능한 드론과 컨트롤러 개발)

  • Seok, Jung-Hwan;Han, Jung-Hee;Baek, Jun-Hyuk;Chang, Won-Joo;Kim, Huhn
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.41-45
    • /
    • 2017
  • Drones can be manipulated in a variety of ways. One of the most common controller is joystick method. But joystick controller uses both hands and takes a long time to learn. Particularly, in the case of 8-character flight, it is necessary to use both front and rear flight (pitch), left and right flight (Roll), and body rotation (Yaw). Joystick controller has limitations to intuitively control it. In particular, when the main body rotates, the viewpoint of the forward direction is changed between the drones and the user, thereby causing a mental rotation problem in which the user must control the rotating state of the drones. Therefore, we developed a motion matching controller that matches the motion of the drones and the controller. That is, the movement of the drone and the movement of the controller are the same. In this study, we used a gyro sensor and an acceleration sensor to map the controller's forward / backward, left / right and body rotation movements to drone's forward / backward, left / right, and rotational flight motion. The motor output is controlled by the throttle dial at the center of the controller. As the motions coincide with each other, it is expected that the first drone operator will be able to control more intuitively than the joystick manipulator with less learning.

Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles (날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석)

  • Kim, Joong-Kwan;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.

A Real time Simulation for Performance Analysis of Flight Control System (비행체 제어장치의 성능 해석을 위한 실시간 시뮬레이션)

  • 곽병철;박양배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.458-464
    • /
    • 1986
  • This paper introduces a method for design verification and performance evaluation of flight control system. The method is a real time hardware in the loop simulation using the hybrid computer and motion table facility. As a typical illustration, a roll control system of flight vehicle is applied. The simulation validity is demonstrated by comparing hardware test results with analog simulation results.

  • PDF