• Title/Summary/Keyword: Flight Critical Data

Search Result 49, Processing Time 0.018 seconds

Study on Practical Use of Air Vehicle Test Equipment(AVTE) for UAV Operation Support (무인항공기 운용 지원을 위한 비행체 점검장비 활용에 관한 연구)

  • Song, Yong-Ha;Go, Eun-kyoung;Kwon, Sang-Eun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.320-326
    • /
    • 2021
  • AVTE(Air Vehicle Test Equipment) is an equipment to inspect and check the status of on-board aircraft LRUs(Line Replacement Units) before and after flight for performing successful UAV(Unmanned Aerial Vehicle) missions. This paper suggests utilization of the AVTE as an operation support-equipment by implementing several critical functions for UAV-operation on the AVTE. The AVTE easily sets initialization(default) data and compensates for the installation and position errors of the LRUs which provide critical mission data and situation image with pilots without additional individual operation support-equipment. Major fault list and situation image data could be downloaded after flight using the AVTE in the event of UAV emergency situation or unusual occurrence on duty as well. We anticipate the suggested operational approach of the AVTE could dramatically reduce the cost and man power for design and manufacture of additional operation support equipment and effectively diminish workload of the operator.

Development and Flight Test of Educational Water Rocket CULV-1 for Implementation of Launch Vehicle Separation Sequence and Imaging Data Acquisition (발사체 분리과정모사 및 단계별 영상획득이 가능한 교육용 물로켓 CULV-1 개발 및 비행시험)

  • Lee, Myeongjae;Park, Taeyong;Kang, Soojin;Jang, Sueun;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • In this study, we proposed a water rocket CULV-1 (Chosun University Launch Vehicle-1). Unlike a conventional water rocket, CULV-1 can perform the booster rocket, fairing, and payload separation like an actual launch vehicle and also the imaging data acquisition. The conceptual and critical design of the proposed CULV-1 have been performed considering the operation characteristics. The verification tests have been performed from subsystem to system level in accordance with the established test specifications and verification procedures. Through the final launch test of the flight model, we have verified the design effectiveness of the proposed separation mechanisms for water rocket applications and the mission requirements of the CULV-1 also have been complied.

Design and Verification of Mission Equipment Package System for Korean Utility Helicopter (한국형 기동헬기 임무탑재장비체계 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Yu, Yeon-Woon;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.388-396
    • /
    • 2011
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). MEP system development is classified mission-critical embedded system but KUH MEP system developed including flight-critical data implementation. It is important to establish the good development and verification process for the successful system development. This paper describe the development and verification process in each phase for the KUH MEP system. MEP system design is verified through the qualification test, system failure test and compatibility test in System Integration Laboratory(SIL).

Design and Integration of a Dual Redundancy Air Data System for Unmanned Air Vehicles (무인항공기 이중화 대기자료시스템 설계 및 통합 연구)

  • Won, Dae-Yeon;Yun, Seonghun;Lee, Hongju;Hong, Jin-Sung;Hwang, Sun-Yu;Lim, Heung-Sik;Kim, Taekyeum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.639-649
    • /
    • 2020
  • Air data systems measure airspeed, pressure altitude, angle of attack and angle of sideslip. These measurements are essential for operating flight control laws to ensure safe flights. Since the loss or corruption of air data measurements is considered as catastrophic, a high level of operational reliability needs to be achieved for air data systems. In the case of unmanned air vehicles, failure of any of air data sensors is more critical due to the absence of onboard pilot decision aid. This paper presents design of a dual redundancy air data system and the integration process for an unmanned air vehicle. The proposed dual-redundant architecture is based on two independent air data probes and redundancy management by central processing in two independent flight control computers. Starting from unit testing of single air data sensor, details are provided of system level tests used to meet overall requirements. Test results from system integration demonstrate the efficiency of the proposed process.

Body Measurement Changes and Prediction Models for Flight Pilots in Dynamic Postures (자세에 따른 부위별 체표길이 변화량 분석 및 예측모형 개발 -공군 전투조종사를 대상으로-)

  • Lee, Ah Lam;Nam, Yun Ja;Chen, Lin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.84-95
    • /
    • 2020
  • Wearing ease is a critical factor when designing special uniforms such as flight pilot's garment and should reflect occupational properties for better performance. This study measured skin surface on 31 areas in seven postures that refer to the pilot's occupational postures as well as made six prediction models including linear mixed model (LMM) for each body part to find the best fit model. Skin surface measured from 3D body scanned images of 11 male pilot participants. There were significantly positive and negative changes in various areas from standing posture (P1) to dynamic postures (P2-P7). Six models were designed in various compositions using stature and chest circumference as fixed effects and subject and posture as random effects. The best models were linear mixed models with one fixed effect (chest circumference or stature, varies with body parts) and two random effects (subject and posture). The results of this study provide reference data to set wearing ease for pilot's garment and suggests a new methodology in this research area, but verifying the effect of diverse independent variables is left for future studies.

Study on the Improvement of a Spectral Method for the Computation of Wake Vortex Behavior Near the Ground (지면에 근접한 항공기의 와 거동 계산을 위한 스펙트럴법 개선 연구)

  • Ji, Seunghwan;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.35-44
    • /
    • 2022
  • The study on the wake vortex behavior during the aircraft's take-off and landing flight phase is critical to the flight safety of the aircraft, following close behind and the economy of the airport. The study on the wake vortex behavior should include the understanding of the ground effect on the behavior of the multiple wake vortices, generated from aircraft during the take-off and landing flight phase. In thia study, numerical schemes that can consider the ground effect were devised, by applying a vorticity boundary condition and an image method into the existing two-dimensional Fourier-spectral method. The present method was validated by comparing the present results, with the computed and measured data in the published literature. It was shown that the present method can predict the generation and behavior of the secondary vortex near the ground with reasonable accuracy. In future, the effect of the atmospheric conditions such as the stratification and the wind shear on the behavior of the vortex pair will be studied.

Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure (항공기 주익구조물의 피로균열 진전 해석 및 실험을 위한 응력 스펙트럼 알고리즘 개발)

  • Chun, Young Chal;Jang, Yun Jung;Chung, Tae Jin;Kang, Ki Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1281-1286
    • /
    • 2015
  • Fatigue cracks can be generated in aircraft as a result of the cumulative time spent during flight operations, which can extend for long periods of time and cover a variety of missions. If a crack occurs in an aircraft's main spar, it can generate many problems, including a lift time reduction. To solve this problem, it was necessary to perform an analysis of fatigue crack growth in the fatigue critical locations. Much time and expense is involved in generating the stress needed for a crack propagation analysis over a long period of time to obtain the amount of data required for an actual aircraft. In this paper, an algorithm is developed that can calculate the spectrum of stress over a long period of time for a mission by the Southwest Research Institute, which is based on the short-time load factor data produced using the peak-valley cycle counting method.

Analysis of the Effects of Three Line Scanner's Focal Length Bias (Three Line Scanner의 초점거리 오차의 영향에 관한 연구)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The positions, attitudes, and internal orientation parameters of three line scanners are critical factors in order to acquire the accurate location of objects on the ground. Based on the assumption that positions and attitudes of the sensors are derived either from direct geo-referencing which of using Global Positioning Systems (GPS) and Inertial Navigation Systems (INS), or from indirect geo-referencing which of using Ground Control Points (GCPs), this paper describes on biased effects of Internal Orientation Parameter (IOP) on the ground. The research concentrated on geometrical explanations of effects from different focal length biases on the ground. The Synthetic data was collected by reasonable flight trajectories and attitudes of three line scanners. The result of experiments demonstrated that the focal length bias in case of indirect geo-referencing does not have critical influences on the quality of reconstructed ground space. Also, the relationships between IO parameters and EO parameters were found by the correlation analysis. In fact, the focal length bias in case of the direct geo-referencing caused significant errors on coordinates of reconstructed objects. The RMSE values along the vertical direction and the amount of focal length bias turned out to be almost perfect linear relationship.

Air-Launched Weapon Engagement Zone Development Utilizing SCG (Scaled Conjugate Gradient) Algorithm

  • Hansang JO;Rho Shin MYONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly used for aircraft integration of air-launched weapons.

Analysing the Impact of Service Quality on Brand Image and Brand Advocacy

  • Jungmin KIM;Soo-Kyoung LEE;Rihyun SHIN;Jin-Woo PARK
    • Journal of Distribution Science
    • /
    • v.22 no.4
    • /
    • pp.79-89
    • /
    • 2024
  • Purpose: This study aims to enhance airport service quality by examining their impact on brand image, advocacy, and mediating brand trust in the aviation service distribution sector. Research Design, Data, and Methodology: Using existing literature, we propose a structural model exploring the relationships between key components which are service quality, brand trust, brand Image and brand advocacy. An online survey, based on prior literature, was administered to 287 Koreans who have experienced using facilities or services at Incheon International Airport (IIA). Statistical analysis employed confirmatory factor analysis (CFA) and structural equation modelling (SEM). Results: Research findings show significant impacts of airport service quality on brand trust. Increased brand trust positively influences airport brand image and advocacy. Conclusion: The study emphasizes the aviation industry's potential to boost brand trust through improved airport service quality via users' interactions. Service quality is critical factors in building brand trust. The findings emphasize the critical role of service quality in fostering brand trust. It underscores the importance of user's satisfaction with service quality in fostering brand trust which can lead to brand image and brand advocacy. The aviation industry should formulate policies and strategies to enhance brand trust improved service quality, thereby improving brand image and brand advocacy.