DOI QR코드

DOI QR Code

Study on the Improvement of a Spectral Method for the Computation of Wake Vortex Behavior Near the Ground

지면에 근접한 항공기의 와 거동 계산을 위한 스펙트럴법 개선 연구

  • Received : 2022.04.18
  • Accepted : 2022.07.31
  • Published : 2022.08.31

Abstract

The study on the wake vortex behavior during the aircraft's take-off and landing flight phase is critical to the flight safety of the aircraft, following close behind and the economy of the airport. The study on the wake vortex behavior should include the understanding of the ground effect on the behavior of the multiple wake vortices, generated from aircraft during the take-off and landing flight phase. In thia study, numerical schemes that can consider the ground effect were devised, by applying a vorticity boundary condition and an image method into the existing two-dimensional Fourier-spectral method. The present method was validated by comparing the present results, with the computed and measured data in the published literature. It was shown that the present method can predict the generation and behavior of the secondary vortex near the ground with reasonable accuracy. In future, the effect of the atmospheric conditions such as the stratification and the wind shear on the behavior of the vortex pair will be studied.

이·착륙하는 항공기에서 발생하는 후류의 거동에 대한 연구는 근접 후행 항공기의 비행안정성과 공항의 경제성 등과 관련하여 매우 중요하다. 특히 이착륙 비행단계에서 발생한 와들의 거동 연구는 지면효과가 반드시 고려해야 한다. 본 연구에서는 기존의 2차원 스펙트럴법에 와도경계조건 및 이미지법을 적용하여, 지면효과가 고려될 수 있는 수치해법을 도출하였다. 개선된 수치기법을 사용하여 얻은 결과를 참고문헌의 수치해석 결과 및 실험결과와 비교하여 타당성을 검증하였다. 특히, 본 연구의 수치해석방법으로 지면근처에서 발생하는 이차와(secondary vortex)의 생성과 박리, 그리고 거동을 예측할 수 있음을 보였다. 향후 본 연구방법을 확장하여 Stratification, Wind Shear 등 다양한 기상조건이 와의 거동에 미치는 영향을 연구할 계획이다.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업 (N0.2018R1D1A3B07050384)으로 수행되었습니다.

References

  1. Doc 4444 : Procedures for Air Navigation Service - Air Traffic Management, 6th Ed., ICAO, Canada, 2016.
  2. Air Traffic Organization Policy : Order 7110.65Y, FAA, U.S.A., 2019.
  3. Breisamter, C., "Wake Vortex Characteristics of Transport Aircraft," Progress in Aerospace Sciences, Vol. 47, Issue 2, pp. 89-134, 2011. https://doi.org/10.1016/j.paerosci.2010.09.002
  4. Harvey, J. K. and Perry, F. J., "Flowfield Produced by Trailing Vortices in the Vicinity of the Ground," AIAAJ, Vol. 9, No. 8, pp.1659-1660, 1971. https://doi.org/10.2514/3.6415
  5. Zheng, Z. C. and Ash, R. L., "Study of Aircraft Wake Vortex Behavior Near the Ground," AIAA Journal, Vol. 34, No. 3, pp. 580-589, 1996. https://doi.org/10.2514/3.13107
  6. Corjon, A., Zheng, Z. C. and Greene, G. C., "Model of the Behavior of Aircraft Wake Vortices Experiencing Crosswind Near the Ground," 14th Applied Aerodynamics Conference, New Orleans, U.S.A., June 1996.
  7. Liu, H. T., Hwang P. A. and Srnsky, R. A., "Physical Modeling of Ground Effects on Vortex Wakes," Journal of Aircraft, Vol. 29, No. 6, pp. 1027-1034, 1992. https://doi.org/10.2514/3.46280
  8. Robins, R. E., Delisi, D. P. and Greene, G. C., "Development and Validation of a Wake Vortex Predictor Algorithm," 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, U.S.A., 1998.
  9. Greene, G. C., "An Approximate Model of Vortex Decay in the Atmosphere," Journal of Aircraft, Vol. 23, No. 7, pp. 566-573, 1986. https://doi.org/10.2514/3.45345
  10. Huang, X. and Zhang, X., "A fourier pseudospectral method for some computational aeroacoustics problems," International Journal of Aeroacoutics, Vol. 5, No. 3, pp. 279-294, 2006. https://doi.org/10.1260/1475-472X.5.3.279
  11. Hemati, M., "Vortex Merger : A Numerical Investigation," University of California-Los Angeles, U.S.A., 2009.
  12. Ji, S. H. and Han, C. H., "Computation of Wake Vortex Behavior Behind Airplanes in Close Formation Flight Using a Fourier-Spectral Method," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 1, pp. 1-11, 2020. https://doi.org/10.5139/JKSAS.2020.48.1.1
  13. Zheng, Z. C., "A Consistent Boundary Condition for Vorticity-Streamfunction Simulation of Wall-Bounded Vortex Flow," Applied Mathematics and Computation, Vol. 206, No. 1, pp. 205-213, 2008. https://doi.org/10.1016/j.amc.2008.09.012
  14. Turk, L., Coors, D. and Jacob, D., "Behavior of Wake Vortices Near the Ground over a Large Range of Reynolds Numbers," Aerospace Science and Technology, Vol. 3, No. 2, pp. 71-81, 1999. https://doi.org/10.1016/S1270-9638(99)80031-5
  15. P.F. Fischer, J.W. Lottes, S.G Kerkemeier, 2008, Nek5000 web page, http://nek5000.mcs.anl.gov.
  16. Gerz, T., Holzapfel, F. and Darracq, D., "Aircraft Wake Vortices - A Position Paper," 2002, WakeNet web page, https://www.wakenet.eu.
  17. Han, C. and Spyros, K., "Study on the Wake Shape behind a Wing in Ground Effect Using an Unsteady Discrete Vortex Panel Method," Open Journal of Fluid Dynamics, Vol.3, No.4, December 2013, pp. 261-265. https://doi.org/10.4236/ojfd.2013.34032
  18. Holzapfel, F. and Steen, M., "Aircraft Wake Vortex Evolution in Ground Proximity : Analysis and Parameterization," AIAA Journal, Vol. 45, No. 1, pp. 218-227, 2007. https://doi.org/10.2514/1.23917
  19. Wang, Y., Liu, P., Hu, T. and Qu, Q., "Investigation of Co-rotating Vortex Merger in Ground Proximity," Aerospace Science and Technology, Vol. 53, pp. 116-127, 2016. https://doi.org/10.1016/j.ast.2016.03.017
  20. Leweke, T., Dizes, S. L., and Williamson, C. H. K., "Dnamics and Instabilities of Vortex Pairs," Annual Review of Fluid Mechanics, Vol. 48, pp.507-541, 2016. https://doi.org/10.1146/annurev-fluid-122414-034558
  21. Donaldson, C. D. and Bilanin, A. J., "Vortex Wakes of Conventional Aircraft," AGARDograph, No. 204, 1975.
  22. Orlandi, P., "Two-Dimensional and Three-Dimensional Direct Numerical Simulation of Co-Rotating Vortices," Physics of Fluids, Vol. 19, No. 1, 2007.
  23. Meunier, P., Dizes, S. L. and Leweke, T., "Physics of vortex merging," C. R. Physique, Vol. 6, pp. 431-450, 2005 https://doi.org/10.1016/j.crhy.2005.06.003