• Title/Summary/Keyword: Flight Compatibility Test

Search Result 26, Processing Time 0.026 seconds

Flight Compatibility Certification of ALQ-X ECM Pod (ALQ-X ECM 포드 비행 적합성 인증)

  • Jun, Seung-Moon;Lim, Jae-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.91-99
    • /
    • 2005
  • Flight compatibility certification is performed to substantiate the compatibility between ALQ-X ECM pod and KF-16D/RF-4C aircraft. A certification plan for the ALQ-X flight compatibility is established. Similarity analysis, mass/inertia analysis, structural analysis/test, and ground vibration test/flutter analysis are made to support the safety of MIL-HDBK-1763 Test 250 (Captive compatibility flight profile). Aircraft flew along flight envelope boundary with representative ALQ-X configurations. Handling qualities are evaluated by comparing flight characteristics of the aircraft with and without ALQ-X. Structural integrity and endurance is evaluated using measured flight test data. Results of these flight tests showed that ALQ-X is compatible with KF-16D/RF-4C without altering the flight envelope which has originally been certified for ALQ-88 and ALQ-119 ECM pods. ALQ-X certification program made following technical achievements: Type III certification for foreign designed fighter, flutter analysis program development using GVT results, and utilization of MIL-STD-1553B data bus in flight test.

Study of Analysis Technique of Flight Compatibility Test Data using Instrumented Pod for External Store (외부장착 계측포드를 사용한 비행적합성 자료 분석기법 연구)

  • Kim, Jong-Heon;Jun, Oo-Chul;Jun, Seung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.105-110
    • /
    • 2005
  • Analysis technique of flight compatibility test results using instrumented pod for external store is studied. Raw data of sensors and MIL-STD-1553B acquired from instrumented pod are analyzed separately. Besides, tuning and synchronization of sensor data enable the analysis of those two type of data simultaneously. Evaluation of analysis result shows that the analyzed data represent maneuvers of the aircraft successfully and agree the values of the real flight tests.

Flight Test of Propulsion System for Verifying Engine/Aircraft Compatibility of T-50 Advanced Trainer (T-50 고등 훈련기 엔진/기체 적합성 검증을 위한 추진계통 비행시험)

  • Lee, Sang-Hyo;Jeong, In-Myon;Jung, Joo-Hyun;Shim, Jae-Kwang;Kang, Sung-Soo;Park, Sung-Hwan;Han, Byoung-Hak;Moon, Hyung-Rae;Cha, Jae-Byoung;Lee, Boo-ll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.948-956
    • /
    • 2007
  • It is important during FSD(Full Scale Development) period to verify whether the aircraft system function meets the aircraft requirements and functional performance. Especially, the functionality of the integrated propulsion system should be verified to evaluate the compatibility with aircraft. Various flight tests such as the engine airstart test, the engine horsepower extraction test, the backup throttle functionality test had been performed to evaluate the engine/aircraft compatibility with T-50 during FSD period. Through such flight tests, it was confirmed that the propulsion system of T-50 was properly designed and installed to the aircraft. This paper shows description on each flight test item, test procedure and test results. It is expected that this paper could be a reference for preparing the propulsion flight test in other aircraft developments.

A Research on Aerial Refueling Type and Flight Testing of Boom-Receptacle Systems for a Fixed-wing Aircraft (고정익 항공기 공중급유 유형 및 Boom-Receptacle 시스템 비행시험 평가 방안 연구)

  • Kim, Dae-wook;Kim, Chan-jo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.70-80
    • /
    • 2022
  • An aerial refueling provides for extension of operational time and range for aircraft and enhances mission effectiveness, hence it application by most military aircrafts. The receiver aircraft should have the aerial refueling clearance that is established by performing technical and operational compatibility assessments to certify it for aerial refueling with a specific tanker model. The compatibility assessment includes aerial refueling handling qualities, functional, fuel, lighting system testing and it is finally verified through flight testing. However, since aerial refueling compatibility assessments have never been performed in Korea, there is no experience to determine the test requirements and the scope and size of the test program for a new development aircraft. This paper therefore introduces the common techniques of aerial refueling and aerial refueling flight test methods to understand the aerial refueling FCS (Flight Control System), OFP (operational flight program) and system validation, and aerial refueling envelope clearance of a fixed wing aircraft for a boom and receptacle refueling system that is being introduced into Korea Air Force.

Flight Demonstration Test of a Smart Skin Antenna for Communication and Navigation (통신 항법용 스마트 스킨 안테나의 비행데모시험)

  • Kim, Min-Sung;Park, Chan-Yik;Cho, Chang-Min;Yoon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.567-575
    • /
    • 2014
  • This paper suggests an installation procedure of a smart skin prototype into an aircraft, flight demonstration test procedures and test results. Four communication and navigation antennas are embedded into one Conformal Load-bearing Antenna Structure(CLAS). Log periodic patch type antenna was designed as a multi-band antenna to cover four antenna frequency bands. The requirements of CLAS were verified by ground tests before aircraft installation. A CLAS speed-brake was installed into KT-1 aircraft and performances of dual antennas were verified as multi-antenna tests on the ground. Electromagnetic compatibility tests were conducted to check compatibility between the CLAS and all existing equipments. Flight demonstration tests were conducted by one sortie of flight test for one antenna. The activeness and continuity of communication and navigation signal during the flight, null area of antenna signal along the circling flight were monitored. The embedded antennas worked better than expected during four sorties of flight tests.

Operation of Night Vision Goggle for Aircraft (항공기 야간투시경 운용)

  • Kwon, Jong-Kwang;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.34-41
    • /
    • 2006
  • This paper describes the general considerations and operational applications of aircraft night vision goggle(NVG). The operators should recognize the NVG characteristics, natural night light sources and interoperability between them. And they have to keep attention to the method to take steps to avoid misperceptions, illusions during flight, and the negative impact on the effectiveness and safety of the mission. The considerations based on the interoperability between NVG and night operation suggest the evaluation items of NVG field test and flight test.

A Study on the Store Compliance Verification for KT-1P Aircraft

  • Kim, Dae-wook;Kim, Chan-jo;Wu, Bong-gil
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • KT-1P for the Peru Air Force will be used as a utility aircraft with upgraded avionics equipment and arming capability based on KT-1 and KA-1. KT-1P should be shown for compatibility of new store loading configurations loaded with dispenser, bomb, and rocket based on aircraft-store compatibility test and evaluation procedures before KT-1P is operated as a light attack aircraft. The weapon system ground test for installation and flight test for envelope expansion including store separation are described in this paper, which was performed referring 'seek eagle program' under MIL-HDBK-1763 and MIL-HDBK-244A.

Design and Verification of Mission Equipment Package System for Korean Utility Helicopter (한국형 기동헬기 임무탑재장비체계 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Yu, Yeon-Woon;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.388-396
    • /
    • 2011
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). MEP system development is classified mission-critical embedded system but KUH MEP system developed including flight-critical data implementation. It is important to establish the good development and verification process for the successful system development. This paper describe the development and verification process in each phase for the KUH MEP system. MEP system design is verified through the qualification test, system failure test and compatibility test in System Integration Laboratory(SIL).

Design of Instrumented Pod for Flight Aeroacoustic Environment (비행 공력음향 환경 측정을 위한 계측포드 설계)

  • Jun, Oo-Chul;Kim, Sang-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.536-541
    • /
    • 2012
  • An instrumented pod has been developed to measure the aeroacoustic environment as well as the conventional data such as load, vibration, and aerodynamic heating of fighters during flight tests, confirming to the recently developed external pod design for fighters. This study presents the development of the measurement system in detail, being the first indigenous effort in its kind. The pod was designed to meet the requirements of the MIL-HDBK-1763 and MIL-STD-810 Method 515, which are the base to determine the locations and range of sensors. The Endevco 8510B-2 was selected as the sensor to withstand the harsh environment during the flight tests. In order to assess the integrity of the fabricated pod design, a ground run-up test of a KF-16 has been conducted with the pod installed at Station 5. The test results show that the system works well but the sound level exceeds the predetermined sensor range. The sensor range has been readjusted for flight test performed later.