• Title/Summary/Keyword: Flexure Hinge Mechanism

Search Result 61, Processing Time 0.025 seconds

Flexure hinge mechanism having amplified rectilinear motion for confocal scanning microscopy using optical section

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.6-162
    • /
    • 2001
  • Confocal scanning microscopy (CSM) is an important instrument in a wide variety of imaging applications because of its ability to provide three-dimensional images of thick, volume specimens. The mechanism for two-dimensional beam scanning and optical sectioning has an important roe in CSM as the three-dimensional profiler. This optical sectioning property arises from the use of a point detector, which serves to attenuate the signals from out-of-focus. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. Thorough design of optical sectioner is crucial to the success of CSM in the field ...

  • PDF

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.

Development of a 3-axis fine positioning stage : Part 2. Experiments and performance evaluation (초정밀 3축 이송 스테이지의 개발 :2. 동특성 실험 및 성능 평가)

  • Kang, Joong-Ok;Kim, Man-Dal;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1207-1210
    • /
    • 2003
  • This paper deals with experiments for dynamic characteristics and performance evaluation of the 3-axis fine positioning stage developed in [1]. The features of the developed fine positioning stage are the long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design. The dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the actuator and the stage design. Performance evaluation is also made for the PZT actuators as well as the stage positioning accuracy. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning.

  • PDF

Study of Dual Servo System for Measurement System of Mechanical Property (재료의 기계적 물성측정 시험장치를 위한 이중서보 시스템에 관한 연구)

  • 최현석;송치우;한창수;이형욱;최태훈;이낙규;나경환
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • This paper presents a measurement system of mechanical property using dual servo system. There are many kinds of method to measure material properties such as tensile test, indention and bending test. It is highly required to measure the properties of nano-sized material and structure. However, It is need more accurate measurement system, more stable and frequency response than conventional test. In this paper, we designed the dual servo system for a measuring instrument The dual servo system consisting of a coarse stage and a fine motion stage with VCM and PZT is proposed. Mechanical mechanism is designed with the leaf spring type of flexure hinge joint. Lead compensator is applied to this control system, and is designed by PQ method.

  • PDF

Development of High Precision Actuator for Micro Press System by Inchworm Motor (인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발)

  • Choi, Jong-Pil;Nam, Kwang-Sun;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

An Experiment of the Displacement Amplifying Units(DAUs) Driven by the Piezo Actuators (압전소자로 구동되는 변위확대기구에 대한 기초실험)

  • Baek, Chang-Wook;Shin, Jong-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1054-1056
    • /
    • 1993
  • The displacement amplifying units(DAUs) of the flexure hinge mechanism are used to amplify the displacements from the Piezo actuators using the principle of a lever. We fabricate for two step DAUs with the SUS304(stainless steel) and experiment them. The fabricated four DAUs have all the hinges aligned to a straight line, and differ in the first step ideal gain($4{\times}10,\;6{\times}10,\;8{\times}10,\;10{\times}10$). We measure the input and the output displacements to get the real amplifying gain. The resonant frequencies of these DAUs are also measured. The experimental results are compared with those of the theoretical formula and with those of the numerical analyses.

  • PDF

Development of 3-axis fine Positioning Stage : Part 2. Fabrication and Performance Evaluation (초정밀 3축 이송 스테이지의 개발 : 2. 제작 및 성능 평가)

  • Kang, Joong-Ok;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.155-162
    • /
    • 2004
  • This paper presents the fabrication procedure and the experiments for the 3-axis fine positioning stage proposed in[1]. First, the dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the stage design specifications. Secondly, the performance of the stage is also evaluated on the accuracy associated with linear positioning, angular error, and straightness error. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning. Through the analysis and experiment, the developed fine positioning stage are found to have a long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design.

Development and Performance Evaluation of Fine Stage for 3-DOF Error Compensation of a Linear Axis (직선 이송축의 3자유도 오차 보정을 위한 미세 구동 스테이지 개발 및 성능 평가)

  • Lee, Jae Chang;Lee, Min Jae;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • A fine stage is developed for the 3-DOF error compensation of a linear axis in order to improve the positioning accuracy. This stage is designed as a planar parallel mechanism, and the joints are based on a flexure hinge to achieve ultra-precise positioning. Also, the effect of Abbe's offsets between the measuring and driving coordinate systems is minimized to ensure an exact error compensation. The mode shapes of the designed stage are analyzed to verify the desired 3-DOF motions, and the workspace and displacement of a piezoelectric actuator (PZT) for compensation are analyzed using forward and inverse kinematics. The 3-DOF error of a linear axis is measured and compensated by using the developed fine stage. A marked improvement is observed compared to the results obtained without error compensation. The peak-to-valley (PV) values of the positional and rotational errors are reduced by 92.6% and 91.3%, respectively.

Development of the Precision Positioning Mechanism by Nano Displacement Magnification Device (나노 변위확대기구의 정밀위치결정기구에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Zhao, Zhijun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • A new precision positioning mechanism for stage was been developed by Displacement Magnification Device(DMD) in this paper. The DMD was composed of the beam and multilayer piezoelectric actuators. The theoretical and experimental analysis of DMD to enlarge displacement more then 50times were discussed. And the 2-axis stage by using displacement amplification apparatus was added in the new DMD, and it was able to do it through finite element analysis and experiment. As the results, the magnification of DMD can be obtained about $100{mu}m$ displacement to the 10V input voltage($1.5{mu}m$). And the about 50nm of linearity error in the $30{mu}m$ measurement range and 20times of the amplification in displacement can be measured. In addition, the experimental results are confirmed the possibility of millimeter displacement characteristics and correspond to finite element analysis results.