• Title/Summary/Keyword: Flexural resistance ratio

Search Result 157, Processing Time 0.021 seconds

Flexural behavior of titanium bar reinforced granite with various reinforcement ratio

  • Lim, Woo-Young
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Granite is commonly used in the construction of the ancient stone pagodas of Korea. The material has excellent weathering resistance and durability, as well as high compressive strength. Most of the stone-made state-designated architectural heritage of Korea is made of granite. Therefore, the understanding of the structural feasibility of stone-made architectural heritage is crucial. Even though, until now, experimental studies for the reinforced stone have been rarely performed. This study intends to suggest a new methodology for the reinforcement of granite using a threaded titanium bar. Through the experimental study, the flexural behavior of the reinforced granite depending on the reinforcement ratio is investigated. Based on the test results, a moment-displacement relationship for the design of reinforced granite is suggested.

A Study on the Freezing and Thawing Resistance of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 동결융해 저항성에 관한 연구)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.331-336
    • /
    • 1999
  • Permeable polymer concrete in this study is one of the environment conscious concrete that can be applied at road, side walks and river embankment, etc. The purpose of this study is to evaluate the effects of mix proportions such as resing content, filler-binder ratio and aggregate ratio on the freezing and thawing resistance of permeable polymer concrete. The permeable polymer concrete are prepared with the resin ratio of 5%, 6% and 7%, filler-binder ratio of 0, 0.5 and 1.0, and 2.5~5mm sized aggregate ratio to standard sand of 10:10, 10:20, 20:10 and 20:20. It is tested for freezing and thawing test according to ASTM C 666092, and then, weight change, length change, relative dynamic modulus, durability factor, and compressive and flexural strengths after test are measured. From the test results, the resistance to freezing and thawing of permeable polymer concrete increased with increase the resing content, filler-binder ratio and fine aggregate ratio.

  • PDF

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

Evaluation of Chemical Resistance of Polymer Powder-Modified Mortars With Accelerators (급결제를 이용한 분말수지 혼입 폴리머 시멘트 모르타르의 내약품성 평가)

  • Lee Chol Woong;Mun Kyoung Ju;Xu Xiang Yu;Park Won Chun;Choi Nak Woon;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.555-558
    • /
    • 2005
  • The purpose of this study is to evaluate the chemical resistance of polymer powder-modified mortars with special accelerator component. Polymer powder-modified mortars with the accelerator are prepared with various polymer-binder ratios, and tested for flexural and compressive strengths and mass change. Chemicals resistance was tested by dealing with $10\%$ HCl and $5\%\;H_2SO_4$ aqueous solution. As a result, the weight reduction ratio of the mortars decreased with increasing polymer-binder ratio. However, in the viewpoint of strength reduction by chemical attacks, the maximum chemical resistance of the mortars was shown at a polymer-binder ratio of $5\%$.

  • PDF

Numerical investigation on punching shear of RC slabs exposed to fire

  • Sadaghian, Hamed;Farzam, Masood
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.217-233
    • /
    • 2019
  • This paper describes the numerical modelling of an interior slab-column connection to investigate the punching shear resistance of reinforced concrete (RC) slabs under fire conditions. Parameters of the study were the fire direction, flexural reinforcement ratio, load levels, shear reinforcement and compressive strength of concrete. Moreover, the efficiency of the insulating material, gypsum, in reducing the heat transferred to the slab was assessed. Validation studies were conducted comparing the simulation results to experiments from the literature and common codes of practice. Temperature dependencies of both concrete and reinforcing steel bars were considered in thermo-mechanical analyses. Results showed that there is a slight difference in temperature endurance of various models with respect to concrete with different compressive strengths. It was also concluded that compared to a slab without gypsum, 10-mm and 20-mm thick gypsum reduce the maximum heat transferred to the slab by 45.8% and 70%, respectively. Finally, it was observed that increasing the flexural reinforcement ratio changes the failure mode from flexural punching to brittle punching in most cases.

Effect of Reinforcing Fiber on Mechanical Properties and Chemical Resistance of Porous Concrete with Hwang-toh (황토를 포함한 다공성 식생콘크리트의 역학적 특성 및 내약품성에 미치는 보강섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi;Park, Jong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.105-113
    • /
    • 2011
  • This study evaluated the effects of fibers on the mechanical properties and chemical solution resistance of porous concrete with fiber type (jute, pulp, PVA and nylon fiber) and fiber volume fraction (0.0%, 0.1%, 0.2%, 0.3%). The tests that were carried out to analysis the properties of porous concrete included compressive strength, void ratio, pH value, and chemical solution exposure with varying type and volume fraction of fiber were conducted. The type and volume fraction of fiber also affected the void ratio, compressive strength, flexural strength and chemical solution exposure. Increased volume fractions of fiber resulted in improved properties of the compressive strength, flexural strength and void ratio. However, the difference between the measured pH value and chemical resistance of porous concrete with fiber type and volume fraction was not significant.

Mechanical Properties and Impact Resistance of Hybrid Fiber Reinforced Concrete with Type of Reinforcing Fibers for Precast Concrete (하이브리드섬유보강 프리캐스트 콘크리트의 보강섬유 종류에 따른 역학적 특성 및 충격저항성)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.29-35
    • /
    • 2013
  • The objective of the current study is to evaluate the effects depending on the types of reinforcing fibers being influential in view of mechanical properties and impact resistance of hybrid fiber reinforced concrete (HFRC) for applications to precast concrete structure. Hybrid fibers applied therefor were three types such as PP/MSF (polypropylene fiber+macro synthetic fiber), PVA/MAF (polyvinyl alcohol fiber+MSF) and JUTE/MSF (natural jute fiber+MSF), where the volume fraction of PP, PVA and natural jute was applied with 0.2 %, respectively, while based on 0.05 % volume fraction of MSF. The HFRC was tested for slump, compressive strength, flexural strength and impact resistance. The test result demonstrated that mixture of such hybrid fibers improve compressive strength, flexural strength and impact resistance of concrete. Moreover, it was found that HFRCs to which hydrophilic fibers, i.e. PVA/MSF and JUTE/MSF, were mixed show more improved features that HFRC to which non-hydrophilic fiber, i.e. PP/MSF was mixed. Meanwhile, the finding that PVA/MSF HFRC exhibited better performance than JUTE/MSF HFRC was attributed from the former having higher aspect ratio than that of the latter.

Experimental Study on the Flexural Behavior of Reinforced Hooked Steel Fibrous Concrete Beam (훅트강섬유보강철근콘크리트보의 휨거동에 관한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.311-318
    • /
    • 1995
  • Increases in strength and ductilities of steel fiber reinforced concrete(SFRC) under direct tension and compression result in improvements of flexural behavior of reinforced steel fibrous concrete beam(RSFCB) Use of hooked steel fibers in stead of round steel fibers enhances futher the structural porperties of a beam due to their greater mechanical bond resistance compared to that of round steel fibers. Flexural strength, initial stiffness ductility and failure mechani는 of RSFCB are dependent upon material and structural parameters and among which are the volume fraction of fibers, reinforcement ratio, and casting depth of SFRC in a beam section. The flexural behavior of RSFCB's are examined experimentally in this study and some conclusions are made regarding those effects of main material and structural parameters on the overall behavior of RSFCB.

  • PDF