• Title/Summary/Keyword: Flexural properties

Search Result 1,791, Processing Time 0.024 seconds

Evaluation of Flexural Properties of Indirect Gum-Shade Composite Resin for Esthetic Improvement (심미성 향상을 위한 간접수복용 Gum-Shade 복합레진의 굽힘 특성 평가)

  • Im, Yong-Woon;Hwang, Seong-Sig
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.407-412
    • /
    • 2015
  • This study investigated flexural properties of indirect Gum-shade composite resins for esthetic improvement. The material utilized in this study was Crea.lign, Twiny flow and Twiny paste (TP). Ten specimens were fabricated with a dimension of $25{\times}2{\times}2mm$ according to the ISO 4049. After fabrications, specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending test was performed in universal testing machine (Instron 3344; Instron, USA) at a crosshead speed of 1 mm/min until the failure occurred. TP exhibited a higher flexural strength (FS) and flexural modulus (FM) compared to the flowable materials. There were significant differences among the three materials in FS and FM. However, there was no significant difference in work of fracture (WOF) in all tested materials (p>0.05). In Weibull analysis, TP showed the greatest Weibull modulus which means a higher reliability of the materials. Also, Gum-shade composite resins revealed a strong correlation in all flexural properties. There was a positive correlation in FS-FM ($r^2=0.99$) and a negative correlation between FS-WOF and FM-WOF ($r^2>0.97$). Therefore, this confirmed that flexural property was important for mechanical behavior evaluation and useful information. To addition, this improved among mechanical properties correlation of materials as important factor.

Mechanical Properties of Paper Sludge-Polypropylene Composites (제지 슬러지-폴리프로필렌수지 복합재의 기계적 성질)

  • Lee, Phil-Woo;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.51-62
    • /
    • 1999
  • The objective of this research is to develop paper sludge reinforced thermoplastic composites which incorporate the advantages of each component materials. The effects of paper sludge content(0, 10, 20, 30, 40----), mesh size(20~40, 60~80, less than 100mesh), and coupling agent(Epolene E-43 and Epolene G-3003) on the mechanical properties of paper sludge-polypropylene composites were investigated. Composite density increased with an increase in the paper sludge content. When paper sludge is incorporated into a polypropylene matrix, the flexural properties of the composite increase significantly with an increase in the paper sludge mixing ratio. Especially, flexural modulus was improved with increasing paper sludge content. The flexural strength of composites was improved, but flexural modulus reduced somewhat with decreasing paper sludge particle size. The flexural properties of paper sludge-polypropylene composites were improved by using coupling agents to enhance the bonding between reinforcing filler and matrix. Use of the epolene E-43 and G-3003 resulted in considerable improvement in the flexural strength over control specimens. The flexural strength of the G-3003 composite system is higher than that of the E-43 system. Generally, izod notched impact strength of paper sludge-polypropylene composite decreased slightly, whereas izod unnotched impact strength decreased significantly with increasing paper sludge contents. There was no effects of paper sludge particle size on impact strength of paper sludge-polypropylene composites. And izod unnotched impact strength of epolene E-43 composite system sharply decreased but that of G-3003 composite system was no tendency with increasing additive content.

  • PDF

Antibacterial Activity and Mechanical Properties of Poly(Lactic-Acid) Composites Containing Zeolite-type Inorganic Bacteriocide

  • Park, Yuri;Park, Tae-Hee;Lee, Rami;Baek, Jong-sung;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.201-210
    • /
    • 2017
  • We studied the antibacterial effect and mechanical properties of PLA composites with in organic porous zeolite-type bacteriocides. The specimens were prepared by an intermeshing co-rotating twin screw extruder using different contents of inorganic bacteriocide. The degree of dispersion of the in organic bacteriocide in the PLA composite was confirmed by FE-SEM. The contents of Ag and Zn in the composite were also investigated by energy dispersive spectroscopy at different concentrations of the inorganic bacteriocide. The antibacterial effects were analyzed by turbidity analysis, shaking culture, and drop-test. The mechanical properties, such as the tensile and flexural properties, impact strength, and physical properties, were also investigated. As the content of inorganic bacteriocide increased, the antibacterial activity was increased, especially against Staphylococcus aureus. Mechanical properties, namely, tensile strength, elongation, flexural strength, and impact strength, tended to decrease with an increase in inorganic bacteriocide content, but the tensile and flexural modulus increased.

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구)

  • 박승범;윤의식;차종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF

An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members (탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구)

  • 박제용;안동준;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF

A study on the material mechanical properties and the flexural wrinkling of foam-filled sandwich beams (포옴심재를 갖는 샌드위치 보의 재료 기계적 성질 및 굽힘 국소좌굴에 관한 연구)

  • Han, Dong Ju;Hong, Chang Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.44-54
    • /
    • 2003
  • The experiments are performed to evaluate mechanical properties about foam and face materials of sandwich beams. These results are applied to the flexural wrinkling estimation of sandwich beam. The 3 point bending test shows that it is reasonable to include pre-buckling behavior in flexural wrinkling analysis, which is closer to experimental result. It is also conducted to survey the wrinkling behavior.

Mechanical Properties of $Al_2O_3-AlN$ Particulate Composite ($Al_2O_3-AlN$계 입자복합체의 기계적 성질)

  • 김영우;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.101-109
    • /
    • 1996
  • The mechanical propertieso f sintered AlN with the addition of alumina were investigated The flexural strength of the AlN dispersed ALON specimens was higher than that of ALON and fracture toughness showed similar tendency. The high-temperature flexural strength of specimens which 50 and 64.3 mol% alumina was added to AlN was constant up to 100$0^{\circ}C$ with about 290 and 420 MPa respectively but abruptly decreased at 120$0^{\circ}C$ In the specimens which contained 5 and 30mol% alumina the flexural strength increased to about 14% at 100$0^{\circ}C$ and did not decrease at 120$0^{\circ}C$ compared to at room temperature.

  • PDF