• 제목/요약/키워드: Flexural Wave Propagation

검색결과 26건 처리시간 0.018초

가선계의 동특성에 관한 연구 (A Study on Dynamic Characteristics of a Catenary System)

  • 김정수;최병두
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.317-323
    • /
    • 1999
  • Dynamic characteristics of catenary that supplies electrical power to high-speed trains are investigated. A simple catenary is composed of the contact and messenger wires connected by droppers possessing bi-directional stiffness properties. For slender, repeating structures such as catenary, both the wave propagation and vibration properties need to be understood. The influence of parameters that determine catenary dynamics are investiaged through numerical simulations involving finite element models. The effects of the tension and flexural rigidity of the contact wire is first investigated. The effects of dropper characteristics are then investigated. For linear droppers wave propagation as well as modal properties are determined. For large catenary motion, droppers can be modeled as bi-directional elements possessing low stiffness in compression and high stiffness in tension. For this case, impulse response is computed and compared with the cases of linear droppers. It is found that the catenary dynamics are primarily determined by contact wire tension and dropper properties, with large responses observed in 5∼40 Hz frequency range. In particular, the dropper stiffness and spacing are found to have dominant influence on the response frequency and the wave transmission characteristics.

  • PDF

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.

Wave propagation in a nonlocal prestressed piezoelectric polygonal plate with non-homogeneity and hygroscopic effect

  • Rajendran Selvamani;Hepzibah Christinal;Farzad Ebrahimi
    • Advances in materials Research
    • /
    • 제12권4호
    • /
    • pp.309-330
    • /
    • 2023
  • The humid thermal vibration characteristics of a nonhomogeneous thermopiezoelectric nonlocal plate of polygonal shape are addressed in the purview of generalized nonlocal thermoelasticity. The plate is initially stressed, and the three-dimensional linear elasticity equations are taken to form motion equations. The problem is solved using the Fourier expansion collocation method along the irregular boundary conditions. The numerical results of physical variables have been discussed for the triangle, square, pentagon, and hexagon shapes of the plates and are given as dispersion curves. The amplitude of non-dimensional frequencies is tabulated for the longitudinal and flexural symmetric modes of the thermopiezoelectric plate via moisture and thermal constants. Also, a comparison of numerical results is made with existing literature, and good agreement is reached.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

유한 원통셸의 큰 끝단 종진동을 발생시키는 감쇠파에 대한 분석 연구 (Study on Analysis of Evanescent Waves Generating the Strong End Axial Vibration of a Finite Cylindrical Shell)

  • 길현권
    • 한국음향학회지
    • /
    • 제30권7호
    • /
    • pp.361-367
    • /
    • 2011
  • 진동하는 원통셸에서는 파동의 크기를 유지하며 전파하는 진행파 (굽힘파, 종파, 전단파)와 전파함에 따라서 파동의 크기가 지수 함수적으로 급격히 감쇠하며 소멸되어가는 감쇠파가 발생한다. 감쇠파의 영향은 일반적으로 가진 지점 혹은 구조물의 끝단 지점 부근에 국한되어 작게 발생되게 된다. 그러나 원통셸의 경우 상당히 큰 감쇠파가 발생할 수 있으며, 이러한 감쇠파로 인하여 종진동이 끝단 부근에서 상당히 크게 발생하는 현상이 일어날 수 있다. 이러한 현상은 저자의 유한 원통셸의 종진동 측정 실험 논문에서 관찰되었으며, 본 논문에서는 이러한 큰 감쇠파에 의한 원통셸의 끝단 종진동 현상을 해석적으로 분석하였다. 원통셸의 진동해석을 위하여서는 파동 전파 방법을 활용하였으며, 해석 결과를 실험 결과와 비교함으로써 진동하는 원통셸의 끝단에서 모드 변환 (굽힘파와 감쇠파간의 변환)에 의하여 상당히 큰 감쇠파가 발생할 수 있음을 보였다. 또한 감쇠파의 영향은 원통셸 끝단의 큰 종진동을 발생시키며, 원통셸 전체 길이의 1/3 지점까지도 영향을 줄 수 있음을 보였다.

복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구 (Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load)

  • 박정원;구만회;박준홍
    • 대한기계학회논문집A
    • /
    • 제38권10호
    • /
    • pp.1125-1131
    • /
    • 2014
  • 복합 구조물의 충격 진동 특성을 이용한 취약성 분석 기법을 제안하였다. 프레임 요소로 구성된 구조물의 충격 거동을 파악하기 위해서 스펙트럴요소법을 적용하였다. 티모센코 보함수를 이용해 고속충돌에 의한 고주파 성분을 포함하는 충격파 전파 특성을 시뮬레이션하였다. 구조물의 결합부분에서는 종방향과 횡방향 파동의 상호 작용을 고려한 파동 전달을 해석하였다. 충격력이 구조물에 작용할 경우 주파수 및 시간 응답을 얻고 전체 구조물에서 충격에너지 전파 특성을 파악하였다. 구조물의 위치별로 계산된 최대가속도 크기와 시스템을 구성하는 주요 부품의 허용 가속도 기준에 의한 취약확률 함수를 정의하고 시스템의 취약 확률을 계산하였다. 제안된 취약성 분석 절차를 이용해 3 차원 전투 차량의 충격 응답을 얻고 충격에 취약한 구조물 위치를 파악하였다.