• Title/Summary/Keyword: Flexural Moment

Search Result 548, Processing Time 0.032 seconds

Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System (FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건)

  • Kim, Jung Joong;Noh, Hyuk-Chun;Reda Taha, Mahmoud M.
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Flexural behavior of post-tensioned precast concrete girder at negative moment region

  • Choi, Seung-Ho;Heo, Inwook;Kim, Jae Hyun;Jeong, Hoseong;Lee, Jae-Yeon;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • This study introduced a post-tensioned precast concrete system that was developed and designed to improve the performance of joints by post-tensioning. Full-scaled specimens were tested to investigate flexural performances at the negative moment region, where the test variables were the presence of slabs, tendon types, and post-tensioned lengths. A specimen with slabs exhibited significantly higher stiffness and strength values than a specimen without slabs. Thus, it would be reasonable to consider the effects of a slab on the flexural strength for an economical design. A specimen with unbonded mono-tendons had slightly lower initial stiffness and flexural strength values than a specimen with bonded multi-tendons but showed greater flexural strength than the value specified in the design codes. The post-tensioned length was found to have no significant impact on the flexural behavior of the proposed post-tensioned precast concrete system. In addition, a finite element analysis was conducted on the proposed post-tensioned precast concrete system, and the tests and analysis results were compared in detail.

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

An Experimental Study on the Flexural Rigidity of Reinforced High Strength Concrete Beams (고강도철근콘크리트 보의 휨강성에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • This paper presents a study on the flexural rigidity of reinforced high strength concrete beams. Thirty six beams with different compressive strength of concrete, tensile reinforcement ratio, compressive reinforcement ratio, and pattern of loadings(1 point loading and 2 points loading) were tested to evaluate the effective moment of inertia. According to the experimental results, the eqation(1) proposed by ACI code for the effective moment of inertia overestimated that of simply supported reinforced high strength concrete beams. Thus, in this paper, an empirical equation(3) is proposed as a lower bound of 90% confidence limit to estimate the effective moment of inertia of simply supported reinforced high strength concrete beams.

Constitutive Modeling of Confined High Strength Concrete (고강도 철근콘크리트 기둥의 구성모델)

  • Kyoung Oh, Van;Hyun Do, Yun;Soo Young, Chung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.445-450
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis to assess the ductility available from high-strength columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratio and strength of rectangular ties, etc. So a stress-strain confinement model is developed which can simulate a complete inelastic moment-curvature relations of a high-strength reinforced concrete column

  • PDF

Semi analytical solutions for flexural-torsional buckling of thin-walled cantilever beams with doubly symmetric cross-sections

  • Gilbert Xiao;Silky Ho;John P. Papangelis
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • An unbraced cantilever beam subjected to loads which cause bending about the major axis may buckle in a flexuraltorsional mode by deflecting laterally and twisting. For the efficient design of these structures, design engineers require a simple accurate equation for the elastic flexural-torsional buckling load. Existing solutions for the flexural-torsional buckling of cantilever beams have mainly been derived by numerical methods which are tedious to implement. In this research, an attempt is made to derive a theoretical equation by the energy method using different buckled shapes. However, the results of a finite element flexural-torsional buckling analysis reveal that the buckled shapes for the lateral deflection and twist rotation are different for cantilever beams. In particular, the buckled shape for the twist rotation also varies with the section size. In light of these findings, the finite element flexural-torsional buckling analysis was then used to derive simple accurate equations for the elastic buckling load and moment for cantilever beams subjected to end point load, uniformly distributed load and end moment. The results are compared with previous research and it was found that the equations derived in this study are accurate and simple to use.

Flexural characteristic changes of fiber reinforced composite $(Fibrekor^{(R)})$ according to water absorption (물 흡수에 따른 fiber reinforced composite $(Fibrekor^{(R)})$의 굽힘 특성 변화)

  • Kim, Sueck-Bum;Kim, Min-Jeong;Kim, Kyung-Ho;Choy, Kwangchul
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.361-370
    • /
    • 2005
  • Fiber reinforced composite (FRC) has been widely used in operative and prosthetic fields of dentistry and its use is expanding into the orthodontic field. The purpose of this study was to examine the changes of flexural properties of FRC reinforced with silica glass fiber (FibreKor, Jeneric/Pentron Inc.. Wallingford. U.S.A.) according to the duration of water absorption. Specimens were grouped according to their shape as round and rectangular cross sections, and were immersed in distilled water at room temperature $(23^{\circ}C)$ for 0 hour 1 hour 1 week. 15 days, 1 mouth and 3 mouths. The number of specimens was 5 for each duration and bending test was done using a torque tester The flexural stiffness after 24 hour water immersion was reduced to 59% for round specimens and 25% for rectangular specimens and after 3 mouths of water immersion it was reduced to 29% and 19% stiffness of the 0 hour-specimen respectively Yield flexural moment after 24 hour water immersion was reduced to 45%for round specimens and 76% for rectangular specimens and after 3 months of water immersion it was reduced to 29% and 60% stiffness of the 0 hour-specimen respectively Ultimate flexural moment after 24 hour water immersion was reduced to 35% for round specimens and 76% for rectangular specimens and after 3 mouths of water immersion it was reduced to 25% and 37% stiffness of 0 hour-specimen respectively. Those results suggested that the flexural stiffness of FibreKor decreased greatly after initial water immersion. Consequently, further research for the maintenance of strength against water will be necessary

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method (할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배)

  • Park, Hong-Gun;Kim, Chang-Soo;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.221-224
    • /
    • 2008
  • A secant stiffness linear analysis method was developed for moment redistribution of moment-resisting frames. In the proposed method, rotational spring models are used for plastic hinges of the members whose flexural moments are needed to be redistributed. At the plastic hinges, secant stiffness is used to address the effect of the flexural stiffness reduced by inelastic deformation. Linear analysis is repeated with adjusted secant stiffness until the flexural equilibrium is satisfied in the structure and members. By using the secant stiffness analysis, the effect of the inelastic deformation on the moment redistribution can be considered. Further, the safety of plastic hinges can be evaluated by comparing the inelastic rotation resulting from the secant stiffness analysis with the rotational capacity of the plastic hinges. For verification, the proposed method was applied to a continuous beam tested in previous study. A application example for a multiple story moment-resisting frame was presented.

  • PDF