• Title/Summary/Keyword: Flexural Experiment

Search Result 335, Processing Time 0.024 seconds

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.

Evaluation on Transverse Load Performance of Lightweight Composite Panels (경량 복합패널의 분포압 강도 성능 평가)

  • Kang, Su-Min;Hwang, Moon-Young;Kim, Sung-Tae;Cho, Young-Jun;Lee, Byung-yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2018
  • Over the last 10 years, the number of disasters has been increasing in Korea. As a result, the need for temporary residences or shelters for disaster conditions is increasing. In this study, post-disaster refugees housing was developed using lightweight composite panels that are lighter than the materials that make up the existing shelter. To accomplish this, the structural performance of the lightweight composite panel was validated. Among the performance tests on the panels, the transverse load test was conducted according to the ASTM E 72 criteria. As a result of the experiment, when each specimen was subjected to a uniformly distributed load, the allowable load was determined according to the span. All the experiments were ended due to a loss of adhesive at the junction of the skin and core. Further analysis was conducted to calculate the shear stress when the junction was dropped. The mean shear stress at the adhesive surface of a specimen, 150 mm and 200 mm in thickness, was 0.0170MPa and 0.0156MPa, respectively. This suggests that similar values were obtained from panels of equal thickness. In addition, this stress provides a criterion of judgment that could be used to inspect the structural performance of the panels. The performance of the panel was evaluated based on the allowable load, but it may be possible to increase the strength of the lightweight composite panel by improving the joining method to avoid separation from the junction.

Effect of Hybrid Fibers on the Engineering Properties of HPFRCC (섬유 조합변화가 HPFRCC의 공학적 특성에 미치는 영향)

  • Han, Dongyeop;Han, Min Gheol;Kang, Byeong Hoe;Park, Yong Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • For the construction materials, concrete, as the most widely used material, is focused on its improvement of performance. Although concrete has many advantages of easiness of handling, economical benefits, and high compressive strength, low tensile strength, brittleness and drying shrinkage are reported as the drawbacks of concrete. Hence, to solve these drawbacks of concrete, many research has conducted especially using fiber-reinforced concrete technology. Especially, HPFRCC which has high volume of fiber reinforcement was suggested as a solution of these drawbacks of normal concrete with increased ductility while it has the possibility of workability loss with fiber clumping which can cause low performance of concrete. Therefore, in this paper, optimized fiber combination with either or both metal and organic fibers is suggested to provide better performance of HPFRCC in tensile strength and ductility. As the results of experiment, better workability was achieved with 1 % of single fiber rather than multiple fibers combinations, espeically, short steel fiber showed the best workability result. Furthermore, in the case of organic fibers which showed higher air content than steel fibers, higher compressive strength was achieved while lower tensile and flexural strength were shown.

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF

The Ductile Behavior Test of the Ultra High Perfomance Fiber Reinforced I Beam by the Combination of the Fiber and Group of Reinforcement Bar (강섬유와 철근집합체 조합을 이용한 초고강도 섬유보강 철근 콘크리트 I형 보의 연성거동에 관한 실험)

  • Park, Jin-Young;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • The purpose of this study is to induce the ductile behavior of the Ultra High Perfomance Concrete Reinforced I beam by substituting the part of steel fiber for bundle of reinforcing bars. Experiment of flexural behavior of the Ultra High Performance Concrete I shaped beam with the combination of the steel fiber and bundle of reinforcement bars was carried out. The volume fractions of steel fiber are 0%, 0.7%, 1%, 2%. The bundle of reinforcing bars and prestressing wire are used to restrain the concrete in compression zone. Length of bundle of reinforcing bar and prestressing wire is the one of test factors. The 9 Reinforced UHPC I shaped beam were made with these test factors. Not only steel fiber but also bundle of longitudinal reinforcing bar has effect to induce the ductile behavior of Reinforced UHPC I beam. The combination of 0.7% or 1.0% steel fiber and bundle of reinforcing bar showed the effective ductile behavior of I beam. The relationship of load-deflection and the crack pattern indicate the usefulness of the bundle of the longitudinal bar which has small diameter with close arrangement each other.

A Study on the Evaluating Method the most Favorable Mixture Proportion of Blended Fine Aggregate for Effective Application of Recycled Aggregate (재생골재의 효율적인 활용을 위한 혼합잔골재의 최적배합평가방법에 관한 연구)

  • Han, Cheon-Goo;Yoon, Gi-Won;Lee, Gun-Cheol;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.113-119
    • /
    • 2006
  • It is now established that more than two types of blended aggregate have beneficial effects on quality and supply of concrete in the long run. However, studies on blended aggregate have not widely been progressive and the evaluation method of its most favorable mixture proportion is still needed. Therefore this study investigated the most favorable mixture proportion through the physical experiment of fresh and hardened state's cement mortar, in response to three types of composite ratio, natural fine aggregate(Ns), crushed fine aggregate(Cs) and recycled fine aggregate(Rs). Test showed that increase of blending ratio of Ns and Cs improved fluidity of mot1ar. For the properties of compressive and flexural strength, mortar blending Ns and Cs properly, exhibited similar value to one using only Cs, while mortar mixing Rs showed lower strength value as less as 6% of control one. Mortar using only Rs exhibited the largest drying shrinkage value. In addition, even thought it is not a clear quantitative analysis, technical-imaging-skill presenting the most favorable mixture proportion 3-dimensionally is proposed in this research, in order to notify the proportion easily.

  • PDF

Engineering Performance of Extruded Fly Ash Cement Panel with Bottom Ash (잔골재로서의 바텀애시를 사용한 플라이애시 시멘트 압출경화체의 공학적 특성)

  • Lee, Myeong-Jin;Kim, Jin-Man;Han, Dong-Yeop;Choi, Duck-Jin;Lee, Keun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • The aim of this research is providing the fundamental data for treating and recycling the byproducts by using the wet processed bottom ash as a fine aggregate replacement for cement-based extruded panel. Although the cement-based extruded panel was used mainly as a cladding component with its high strength and outstanding durability, it was hardly spread because of low economic feasibility due to the high cost of additives or fibers which were used to achieve 14 MPa of flexural strength as a cladding material. As a solution of this drawback, by the previous research, it was possible to replace cement by fly ash up to 80 % by decreasing quality criteria with restricting the application to indoor purpose. In this research, based on the previous research, by using the bottom ash as a replacement of fly ash, improvement of shape retention performance is tried. As a result of the experiment on evaluating the optimum content and PSD of bottom ash, as the fineness modulus and content of bottom ash was increased, the extruding performance was decreased and penetration resistance was increased. Additionally, the optimum content and the maximum particle size was found as 20 %, and 0.3 mm, respectively.

Lap Details Using Headed Bars and Hooked Bars for Flexural Members with Different Depths (확대머리 철근과 갈고리 철근을 이용한 단차가 있는 휨부재의 겹침이음상세)

  • Lee, Kyu-Seon;Jin, Se-Hoon;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.144-152
    • /
    • 2016
  • This paper focuses on the experimental study for investigating the performance for lap splice of hooked or headed reinforcement in beam with different depths. In the experiment, seven specimens, with its variables as the lap length of headed or hooked bar, the existence of stirrups, etc., was manufactured. Bending test was conducted. Lap strengths by test were compared with the theoretical model based on KCI2012. The result showed that the cracks at failure mode occurred along the axial direction to a headed bar. The initial stiffness and the stiffness after initial crack were similar for all specimens. For HS series specimens without stirrups, a 25% increase in lap length was increased 11.8~18.1% maximum strengths. For HH series specimens without stirrups, a increase in lap length did not affect the maximum strengths because of the pryout failure of headed bar. For HS series specimens, the theoretical lap strengths based on KCI2012 considering the B grade lap and the reduction factor for stirrup were evaluated. They are smaller than the test strengths and can ensure the safety in terms of strength capacity. For HH series specimens, the stirrups in the lap zone are needed to prevent the pryout behaviour of headed bar.