• Title/Summary/Keyword: Flexural Deformation

Search Result 399, Processing Time 0.026 seconds

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Lagrangian Formulation of a Geometrically Exact Nonlinear Frame-Cable Element (기하 비선형성을 엄밀히 고려한 비선형 프레임-케이블요소의 정식화)

  • Jung, Myung-Rag;Min, Dong-Ju;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • Two nonlinear frame elements taking into account geometric nonlinearity is presented and compared based on the Lagrangian co-rotational formulation. The first frame element is believed to be geometrically-exact because not only tangent stiffness matrices is exactly evaluated including stiffness matrices due to initial deformation but also total member forces are directly determined from total deformations in the deformed state. Particularly two exact tangent stiffness matrices based on total Lagrangian and updated Lagrangian formulation, respectively, are verified to be identical. In the second frame element, the deformed curved shape is regarded as the polygon and current flexural deformations in iteration process are neglected in evaluating tangent stiffness matrices and total member forces. Two numerical examples are given to demonstrate the accuracy and the good performance of the first frame element compared with the second element. Furthermore it is shown that the first frame element can be used in tracing nonlinear behaviors of cable members.

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

Flexural Behavior of RC Beams Strengthened with CFRP Plate Using Multi-directional Channel-type Anchorage System (다방향 채널형 단부정착장치를 이용한 CFRP판 보강 RC 보의 휨거동)

  • Hong, Ki Nam;Han, Sang Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.171-180
    • /
    • 2008
  • The aim of this paper is to clarify the structural performance of RC beams strengthened with Carbon Fibre Reinforced Polymer(CFRP) plates using channel-type anchorage system. Twelve RC beams were specifically designed without and with a channel-type anchorage system, which was carefully detailed to enhance the benefits of the strengthening plates. All the twelve beams were identical in terms of their geometry but varied in their internal reinforcement, concrete strength. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all the twelve beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with a channel-type anchorage system, a brittle debonding failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

Shear Performance on SFRC Beam Using Recycled Coarse Aggregate (순환골재를 사용한 SFRC 보의 전단성능)

  • Kim, Seongeun;Jeong, Jaewon;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.189-196
    • /
    • 2018
  • Degraded shear performance of reinforced concrete members with recycled coarse aggregate (RCA) compared to flexural strength is a problem. To address this, steel fibers can be used as concrete reinforcement material. In this study, the strength and deformation characteristics of SFRC beams using RCA were to be determined by shear tests. Major experimental variables include the volume fraction of steel fiber (0, 0.5%, 1%), the replacement rate of RCA (0%, 100%), and the shear span ratio (a/d = 1, 2). As a result of the experiment, the shear strength of the specimen increased as the rate of mixing steel fiber increased. For specimens with RCA and 1% steel fiber, the maximum shear strengths increased by 1.77 - 6.25% compared to specimens with normal coarse aggregate (NCA). On the other hand, at 0-0.5% steel fiber, the shear strengths of RCA specimens were reduced by 24.2% to 49.2% compared to NCA specimens. This indicates that reinforcement with 1% volume fraction of steel fiber greatly contributes to preventing shear strength reduction due to the use of RCA.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Basic Properties and Dimension Stability of Ultra Rapid Setting Cement Mortar Containing Low-Quality Recycled Aggregate (저품질의 순환골재를 혼입한 초속경 시멘트 모르타르의 기초물성 및 부피안정성)

  • Jeon, Sang-Min;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The basic properties and volume stability of the ultra-rapid setting cement mortar containing low-quality recycled aggregate with a higher water absorption and lower specific gravity than relavent Korea Standard were experimentally confirmed. The mix proportion without recycled aggregate followed that of the general repair mortar used in the fields. 15% and 30% of the fine aggregate was substituted by the recycled aggregate in the mixtures with and without latex emulsion, and properties and characteristics of the mortar including mortar flow, setting time, compressive and flexural strength, and linear deformation under sealed and unsealed conditions were evaluated. It was confirmed that when low-quality recycled aggregate was used by 30%, there were risks of decrease in the early-age strength by up to 50% within 24h and increases in drying shrinkage by up to 2 times for 2 weeks compared to the the mixtures without the recycled aggregate.

Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces

  • Maalek, Shahrokh;Heidary-Torkamani, Hamid;Pirooz, Moharram Dolatshahi;Naeeini, Seyed Taghi Omid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • In this research, the behavior of tube-in-tube BRBs (TiTBRBs) has been investigated. In a typical TiTBRB, the yielding core tube is located inside the outer restraining one to dissipate energy through extensive plastic deformation, while the outer restraining tube remains essentially elastic. With the aid of FE analyses, the monotonic and cyclic behavior of the proposed TiTBRBs have been studied as individual brace elements. Subsequently, a detailed finite element model of a representative single span-single story frame equipped with such a TiTBRB has been constructed and both monotonic and cyclic behavior of the proposed TiTBRBs have been explored under the application of the AISC loading protocol at the braced frame level. With the aid of backbone curves derived from the FE analyses, a simplified frame model has been developed and verified through comparison with the results of the detailed FE model. It has been shown that, the simplified model is capable of predicting closely the cyclic behavior of the TiTBRB frame and hence can be used for design purposes. Considering type of connection detail used in a frame, the TiTBRB member which behave satisfactorily at the brace element level under cyclic loading conditions, may suffer global buckling due to the flexural demand exerted from the frame to the brace member at its ends. The proposed TiTBRB suit tubular members of offshore structures and the application of such TiTBRB in a typical offshore platform has been introduced and studied in a single frame level using detailed FE model.

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.