• Title/Summary/Keyword: Flexural Deformation

Search Result 399, Processing Time 0.032 seconds

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Analytical Modeling of Seismic Steel Moment Connections Reinforced with Welded Straight Haunch (용접 수평헌치로 보강된 내진 철골 모멘트 접합부의 해석적 모형화)

  • Lee, Cheol-Ho;Yoon, Tae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.559-568
    • /
    • 2000
  • This paper describes new analytical modeling for steel moment connections with welded straight haunch. Among a variety of new details for seismic steel moment connections proposed after the 1994 Northridge and the 1995 Hyogo-Ken Nanbu earthquake, one viable solution was to strengthen the connection by adding a triangular haunch on the bottom side of the beam. However, a simpler design has been called for because of the increased labor associated with fitting the triangular haunch. Adding a straight haunch is one alternative. But a mathematical model that forms the design basis is not available. A simplified analytical model that considers the force interaction and deformation compatibility between the beam and haunch is developed in this study. The proposed modeling predicted quite reasonably the interaction forces at the beam-haunch interface and the flexural stresses in the beam and haunch flange groove welds.

  • PDF

Retrofit Yield Spectra-a practical device in seismic rehabilitation

  • Thermou, G.E.;Elnashai, A.S.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.141-168
    • /
    • 2012
  • The Retrofit Yield Spectrum (RYS) is a new spectrum-based device that relates seismic demand of a retrofitted structure with the fundamental design parameters of the retrofit. This is obtained from superposition of Yield Point Spectra with design charts that summarize in pertinent spectrum-compatible coordinates the attributes of a number of alternative retrofit scenarios. Therefore, once the requirements for upgrading a given structure have been determined, the RYS enable direct insight of the sensitivity of the seismic response of the upgraded structure to the preliminary design decisions made while establishing the retrofit plan. By virtue of their spectrum-based origin, RYS are derived with reference to a single mode of structural vibration; a primary objective is to control the contribution of this mode in the retrofit design so as to produce a desirable distribution of damage at the ultimate limit state by removing soft storey formations and engaging the maximum number of structural members in deformation, in response to the input motion. Calculations are performed with reference to the yield-point, where secant stiffness is proportional to the flexural strength of reinforced concrete members. Derivation and use of the Retrofit Yield Spectra (RYS) refers to the seismic demand expressed either in terms of spectral acceleration, spectral displacement or interstory drift, at yield of the first storey. A reinforced concrete building that has been tested in full scale to a sequence of simulated earthquake excitations is used in the paper as a demonstration case study to examine the effectiveness of the proposed methodology.

A C0 Finite Element of Thin-Walled Open Beams Including Warping Shear Deformation (? 전단변경(剪斷變形)을 고려한 비대칭(非對稱) 박벽단면(薄壁斷面)보의 C0 유한요소(有限要素))

  • Back, Sung Yong;Cho, Hyun Yung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.291-298
    • /
    • 1994
  • This paper presents a new stiffness matrix for the analysis of arbitrary thin-walled open beams in warp-restrained torsion. The element accounts for both flexural and warping torsional effects. To eliminate the ad hoc introduction of St. Venant stiffness in this $C^0$ element, the virtual work equation based on an orthogonal Cartesian coordinate system is used. The effectiveness of the derived block stiffness is addressed. The transformation matrix between two different reference systems is also shown. Numerical examples using the proposed matrix are compared with the classical solutions or other previous results in the literature.

  • PDF

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Performance Evaluation of Laminated-Tempered Glass as a Component of Noise Barrier on Metro Railway Elevated Bridge Against Train Induced Vibration and Wind Load (지하철 고가교 접합강화유리 방음판의 열차진동 및 풍하중에 대한 성능평가)

  • Kim, Suk-Su;Lee, Ho-Beom;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.30-41
    • /
    • 2017
  • Types of noise barrier installed for noise attenuation are largely divided into noise-absorbing format and noise-proofing format. In these days, installation of transparent noise barrier is general trend to solve problems that hinder sunshine and landscape. Some kinds of transparent boards are used to one of components in noise barriers, but in some cases, less transparency and worse pollution due to yellowing phenomena, and severe material deformation are to harm the urban aesthetics Therefore laminated-tempered glass board in that yellowing phenomena does not occur can be replaced as a transparent one to secure those shortcomings. In this paper, the structural safety against train induced vibration and the resistibility to wind load are analyzed for laminated-tempered glass system as a component of noise barrier installed on Metro railway elevated bridges. Also the appropriateness is evaluated through flexural bending performance test, compressive strength test, modulus of elasticity tests, and impact test for the system or the glass material itself. All of these processes are intended to present the deployment of logic to evaluate the adequacy for the system.

Effect of Polyurethane on Fracture Toughness in CTBN/PU/Epoxy (CTBN/PU/Epoxy의 파괴인성에서 폴리우레탄의 영향)

  • Kim, Jong Seok;Hong, Suk Pyo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.172-176
    • /
    • 1998
  • Epoxy adduct carboxyl terminated butadiene acrylonitrile(CTBN) was prepared by blending of CTBN and epoxy resin. CTBN/PU/epoxy was prepared from polyurethane(PU), epoxy resin, and CTBN. The CTBN/PU/epoxy using 5 wt% of CTBN content showed shifting damping peak as PU content increased. It suggested that CTBN/PU/epoxy had good compatibility for all composition at 5 wt% of CTBN content. But miscibility of CTBN/PU/epoxy decreased with the increase of the CTBN content. PU content for maximum flexural properties of CTBN/PU/epoxy was 10 wt%, but decreased with the increase of the PU content. The fracture toughness of CTBN/epoxy was improved by addition of the PU. Fracture surfaces of CTBN/PU/epoxy showed the shear deformation and generation of stress whitening which is associated with the cavitation. Cavitation in the CTBN and shear defomation in the PU modified epoxy matrix are the toughening mechanisms for CTBN/PU/epoxy.

  • PDF

Slip Behavior of High-Tension Bolted Joints Subjected to Compression Force (압축력을 받는 고장력 볼트 이음부의 미끄러짐 거동)

  • Han, Jin Hee;Choi, Jong Kyoung;Heo, In Sung;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • In this study, the slip behavior of high-tension bolted joints subjected to compression force is investigated through 3D finite element analysis and experiments. The relation with sliding load, bolt deformation, and failure load are studied with the metal thickness affecting the bolted joint. The post-sliding behavior considering bolt stiffness is presented and compared with the results by finite element and experiments. The finite element model is constructed by solid elements in ABAQUS, in consideration of all the friction effects between metal plates and bolts. The stress-strain relations in the literature are used, and the sliding displacements and axial stresses around the bolt connection are investigated. The flexural buckling of species happened when the plate thickness is less than the bolt diameter. However, the shear failures of bolt occurred in the opposite case.

Bending Performance Evaluation of Hybrid Forming Composite Beam with High Depth (춤이 큰 고성능 하이브리드 합성보의 휨성능 평가)

  • Kim, Sung Bae;Cho, Seong Hyun;Lee, Jae Yeong;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.403-414
    • /
    • 2016
  • Recently according to the decreasing of steel price and increasing of labor cost the various studies of steel structure and composite structure are proceeding. This study developed the new shape of high depth hybid forming composite beam and performed the bending test to evaluate the bending performance by creating 10 specimens. Bending test result showed that capacity of the beam was increased stably. The ratio of the nominal load to the maximum load($P_u/P_n$) is 1.19 and the deformation capacity(${\delta}_{0.8P_u}/{\delta}_y$) is 3.9~4.5. Also, it is possible to apply the existing evaluation equation(KBC 2009) of composite beam.

Experimental Study on the Similitude of Small-Scale Models in Cyclic Lateral Behaviors of RC Shear Wall Subassemblages (RC벽식 부분구조의 반복 횡하중 거동에서의 축소모델 상사성 실험연구)

  • Lee, Han-Seon;Cho, Chang-Seok;Lee, Sang-Ho;Oh, Sang-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.805-816
    • /
    • 2010
  • For earthquake simulation test it is essential to make sure the similitude in behaviors between the full scale prototype and the reduced scale model. This paper presents the test results obtained through the cyclic lateral-force test, on two-story RC wall subassemblages. A lower 2-story portion of the prototype structure was selected as subassemblages. The global behavior such as the strength and ductility, and the local behavior such as flexural, shear and uplift deformation were measured. The test results of the 3 : 5 scale specimens representing the prototype were compared with those of 1 : 7 scale models. Two types of subassemblages were used: One with lintel beams and one without lintel beams. The comparison shows that 1 : 7 scale model simulated in general successfully the global and local behaviors of the prototype.