• 제목/요약/키워드: Flexural Deformation

검색결과 399건 처리시간 0.022초

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

무아레 간섭계를 이용한 복합재 보강 콘크리트의 변형해석 (Deformation Analysis of Composits-Patched Concrete Using Moire Interferometry)

  • 주진원;채수은;신동일
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.160-170
    • /
    • 2002
  • Many of aged and damaged concrete structure have been revitalized with composite reinforcement. Flexural behaviors of composite-patched concrete specimens are characterized by high-sensitivity moire interferometry. The three-mirror, four-beam interferometry system and a compact loading system are used for obtaining singe patterns representing whole-field contour maps of in-plane displacements. It is seen from the calibration test for the loading system that the measured bending displacement is in excellent agreement with the displacement calculated by the beam theory. The crack opening displacement as well as the bending and the horizontal displacement fur the notched and unnotched specimen are investigated. The results also show that the notched specimen reinforced by a composite sheet has sufficient stiffness and strength compared to the original concrete specimen.

대칭단면 원환부품의 평면진동에 관한 연구 (A study on the flexural virations for the ring with symmetrical cross section)

  • 김광식;김강년
    • 오토저널
    • /
    • 제6권1호
    • /
    • pp.56-62
    • /
    • 1984
  • Various automotive and machine parts are having the shape of circular ring and the study and the verification of its dynamic characteristics can be the important basis of quality control and improvement of performance of inner and outer race of ball and roller radial bearing, ring gear, seal, etc. In this study, three separate sets of governing equations on the flexural vibration of circular ring were formulated each considering the effects of viscous damping, rotatory inertia and shear deformation, and three frequency formulas were derived. Numerical values of frequencies of circular and rectangular cross section ring were tabulated and compared with experimental value. Some important parameters were found in the ring vibration characteristics.

  • PDF

Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition

  • Ye, Hailong;Fu, Chuanqing;Jin, Nanguo;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.183-198
    • /
    • 2015
  • Chloride ingress implies a complex interaction between physical and chemical process, in which heat, moisture and chloride ions transport through concrete cover. Meanwhile, reinforced concrete structure itself undergoes evolution due to variation in temperature, relative humidity and creep effects, which can potentially change the deformation and trigger some micro-cracks in concrete. In addition, all of these process show time-dependent performance with complex interaction between structures and environments. In the present work, a time-dependent behavior of chloride transport in reinforced concrete beam subjected to flexural load is proposed based on the well-known section fiber model. The strain state varies because of stress redistribution caused by the interaction between environment and structure, mainly dominated by thermal stresses and shrinkage stress and creep. Finally, in order to clear the influence of strain state on the chloride diffusivity, experiment test were carried out and a power function used to describe this influence is proposed.

강섬유의 종류에 따른 강섬유보강 콘크리트의 강도 및 휨변형 특성에 관한 실험적 연구 (An Experimental Study on the Strengths and Flexural Deformation of Steel Fiber Reinforced Concrete According to the Steel Fiber-Type)

  • 박승범;김의성;홍석주;강형선;권혁준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.328-334
    • /
    • 1996
  • This report is the results of an experimental study on the relative effectiveness of different types of steel fiber in concrete. The fibers considered in the study were straight-indent and hooked-collated with aspect ratios of about 50~100. A fiber volume of 0~2 percent was used throughout this investigation. The fresh fibrous mixes were characterized by the slump and vebe-time, and the hardened materials by their compressive and flexural load-deflection relationships. Hooked fibers were found to be more effective than straight ones in improving the strength and energy absorption of concrete.

  • PDF

Flexural and shear behaviour of profiled double skin composite elements

  • Anwar Hossain, K.M.;Wright, H.D.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.113-132
    • /
    • 2004
  • Double skin composite element (DSCE) is a novel form of construction comprising two skins of profiled steel sheeting with an infill of concrete. DSCEs are thought to be applicable as shear or core walls in a building where they can resist in-plane loads. In this paper, the behaviour of DSCE subjected to combined bending and shear deformation is described. Small-scale model tests on DSCEs manufactured from micro-concrete and very thin sheeting were conducted to investigate the flexural and shear behaviour along with analytical analysis. The model tests provided information on the strength, stiffness, strain conditions and failure modes of DSCEs. Detailed development of analytical models for strength and stiffness and their performance validation by model tests are presented.

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

The Effects of Superplasticizers on the Engineering Properties of Plain Concrete

  • Park, Seung-Bum
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.29-43
    • /
    • 1999
  • The effects of superplasticizers on fresh and hardened concrete were investigated. The experimental program included tests on the workability and slump loss, bleeding, setting time, air content, compressive, tensile and flexural strength, permeability, shrinkage, freeze-thaw durability and creep deformation. Properties of superplasticized concrete were compared with those of conventional and base concretes. Superplasticizers were observed to have an appreciable fluidifying action in fresh concrete. They permitted a significant water reduction while maintaining the same workability. Bleeding of superplasticized concrete was much lower than that of conventional concrete of the same consistency. This indicates that the use of superplasticizers did not affect the tendency of segregation of fresh concrete. The compressive, tensile, and flexural strengths of superplasticized concrete were significantly higher than those of conventional concrete. The permeability and drying shrinkage and creep of superplasticized concrete were less than those of conventional concrete, but there were no significant differences between base and superplasticized concrete. Compared with base concrete, non-air-entrained superplasticized concrete had slightly higher freeze-thaw durability. and superplasticized concrete with an appropriate amount of entrained air Eave even better resistance to freezing and thawing.

  • PDF

PVA 섬유로 보강된 고인성 시멘트 복합체의 역학적 특성에 대한 잔골재 치수의 영향 평가 (Assessing Effects of Fine Aggregate Size on the Mechanical Properties of HPFRCCs Reinforced with PVA Fiber)

  • 이원석;변장배;윤현도;전에스더
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.657-660
    • /
    • 2006
  • HPFRCCs(High performance fiber reinforced cementitious composites) exhibit characteristics of strain harding and multiple crack. These lead to improvement in ductility, toughness, and deformation capacity under compressive and tensile stress. These properties of HPFRCCs are affected by type of fiber, size of sand. Furthermore these influence compress strength and flexural strength. Therefore experimental study on the mechanical properties of HPFRCCs using PVA fiber was carried out. In this paper, HPFRCCs made of PVA fiber were tested with size of sand, strength of concrete to evaluate characteristics of compressive strength and flexural strength.

  • PDF

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.