• Title/Summary/Keyword: Flexural Capacity

Search Result 897, Processing Time 0.02 seconds

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Retrofit Method of Damaged Flexural Wall (피해가 발생된 휨벽체의 내진보강에 관한 연구)

  • 서수연;이용택;이현호;이리형;천영수;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.811-816
    • /
    • 2002
  • An experimental work is performed to evaluate the retrofit method of damaged flexural walls. For two flexural walls damaged up to almost failure, reinforcements yielded and concrete below height of 1d are replaced with new reinforcements and steel fiber concrete, respectively. In order to evaluate the effectiveness of Aramid sheet for retrofitting walls, Aramid sheet is also, attached to longitudinal direction and rolled horizontal direction of one wall specimen. Horizontal cyclic loads are applied to the top of the specimen with constant axial load. Test result showed that retrofitting with steel fiber concrete after replacing reinforcements can not afford to recover 100% of the wall capacity before damage. However, the capacity of walls could be sufficiently strengthened by using Aramid sheet.

  • PDF

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Flexural behavior of UHPC-RC composite beam

  • Wu, Xiangguo;Lin, Yang
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.387-398
    • /
    • 2016
  • In order to evaluate the effects of U shape ultra high performance concrete (UHPC) permanent form on the behaviors of Reinforced Concrete (RC) beam, a full scale RC composite beam is designed and tested with U shape UHPC permanent form and a reference RC beam with same parameters is tested simultaneously for comparison. The effects of the permanent form on the failure mode, cracking strength, ultimate capacity and deformation are studied. Test results shows that the contributions of the U shape UHPC permanent form to the flexural cracking behaviors of RC beam are significant. This study may provide a reference for the design of sustainable RC beam with high durable UHPC permanent form.

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.

Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams

  • Dar, M. Adil;Subramanian, N.;Rather, Amer I.;Dar, A.R.;Lim, James B.P.;Anbarasu, M.;Roy, Krishanu
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.225-243
    • /
    • 2019
  • Cold-formed steel (CFS) sections when used as primary load carrying members often require additional strengthening for retrofitting purposes. In some cases, it is also necessary to reduce deflections in order to satisfy serviceability requirements. The introduction of angle sections, screwed to the webs so as to act as external stiffeners, has the potential to both increase flexural strength as well as reduce deflections. This paper presents the results of ten four-point bending tests, on built-up CFS sections, both open and closed, with different stiffening arrangements. In the laboratory tests, the stiffening arrangements increased the moment capacity and stiffness of the CFS beams by up to 85% and 100% respectively. The increase in moment capacity was more evident for the open sections, while that reduction in deflection was largest for the closed sections.

Experimental Study on the Structural Capacity of the U-flanged Truss Hybrid Beam with Hollow Rebars (중공철근으로 보강한 U-플랜지 트러스 복합보의 구조 내력에 관한 실험연구)

  • Lee, Seong Min;Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 2022
  • A typical low and medium-sized neighborhood living facility in reinforced concrete building secures a high floor and pursues an efficient module plan(long span). Accordingly, research on the development of new hybrid beams that can innovatively reduce labor costs such as on-site installation and assembly while securing strength and rigidity is ongoing. In order to verify the structural performance of the U-flanged truss composite beam with newly developed shape, Experiments with various variables are required. Based on the results, this study is to evaluate the strength of U-flanged truss hybrid beam through the flexural strength of the Korea Design Code and experimental values. It was evaluated that nominal flexural strength was 110% to 135% higher than the experimental value.

Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads (지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.1-10
    • /
    • 2006
  • Reinforced concrete bridge columns with relatively small aspect ratio show flexure-shear behavior, which is flexural behavior at initial and medium displacement stages and shear failure at final stage. Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.