• Title/Summary/Keyword: Flexural Beam

Search Result 1,211, Processing Time 0.026 seconds

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee;Atefeh Soleymani;Hamed Hasani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

Experimental investigation of masonry walls supported by steel plate-masonry composite beams

  • Jing, Deng-Hu;Chen, Jian-Fei;Amato, Giuseppina;Wu, Ting;Cao, Shuang-Yin
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.709-718
    • /
    • 2018
  • Masonry walls are sometimes removed in buildings to either make new passages or increase the usable space. This may change the loading paths in the structure, and require new beams to transfer the loads which are carried by the masonry walls that are to be removed. One possible method of creating such new beams is to attach steel plates onto part of the existing walls to form a steel plate-masonry composite (SPMC) beam, leading to a new structure with part of the masonry wall supported by a new SPMC beam. This paper presents an experimental investigation into the interaction between the SPMC beam and the masonry wall above. Five SPMC beams supporting a masonry wall were tested to study the influence of parameters including the height-to-span ratio of the masonry wall, height of the beam and thickness of the steel plates. The test results, including failure mode, load-carrying capacity, load-deflection curves and strain distribution, are presented and discussed. It is found that for developing better arching effect in the masonry wall the ratio of the in-plane flexural stiffness of the masonry wall to the flexural stiffness of the SPMC beam must be between 2.8 and 7.1.

Development of Positive Moment Reinforcement (정모멘트 철근의 정착)

  • 홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.421-426
    • /
    • 1998
  • Current code provisions for the development of positive moment reinforcement is reviewed and criticized in this paper. Both the flexural bond and development length concepts are neccesary to consider anchorage requirement of reinforcement at beam ends. The curent design codes show unconservatism for the detailing of reinforcement at the beam ends. This study proposes a new design formula for the development of positive moment reinforcement.

  • PDF

Flexural Test on Beam-Column Connections Using High Strength Concrete and GFRP bars (고강도 콘크리트와 GFRP 보강근을 사용한 보-기둥 접합부 휨 실험)

  • Lee, Hye-Jin;Kim, Si-Jun;Yang, Keun-Hyeok;Park, Sang-Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.177-178
    • /
    • 2017
  • The beam-column connection using high-strength GFRP bars exhibited a comparable flexural strength but brittle failure mode, when compared with those of connection using high-strength steel reinforcement.

  • PDF

An Experimental Study on Flexural Performance of RC Beams Reinforced With Hybrid Prefabricated Retrofit Method (하이브리드 조립형 보강 기법을 적용한 철근콘크리트 보의 휨 성능 평가에 관한 실험적 연구)

  • Moon, Sang Pil;Lee, Sung Ho;Lee, Young Hak;Kim, Min Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.131-139
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.

Analysis of Effective Flexural Rigidity of Corrugated Steel-Concrete Composite Deck with I-beam Welded (I형강으로 보강된 강합성 절곡 바닥판의 유효 휨강성 분석)

  • Son, Chang-Du;Hong, Sung-Nam;Park, Jun-Myung;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.145-154
    • /
    • 2009
  • Steel-Concrete Composite Deck with I-beam welded is lighter and easier to construct than conventional in situ reinforced concrete slabs due to the I-beam embedded in the corrugated slab. For the calculation of effective flexural rigidity of conventional reinforced concrete structures, methods suggested in Design Standard for Roads and Bridges and ACI have been used. In this paper, the calculation methods were applied to steel-concrete composite deck with I-beam welded and then results of the steel-concrete composite deck were compared with those of reinforced concrete slabs. In addition, applicability of the methods to steel-concrete composite deck with I-beam welded was estimated. In order to compare the effective flexural rigidity, flexural experiments were conducted. Fifteen slabs were built and the variables considered in the experiments were studs, length of the slab, shape of the section and connecting methods.

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

Effect of prestressing on the first flexural natural frequency of beams

  • Jaiswal, O.R.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.515-524
    • /
    • 2008
  • In this paper the effect of prestressing force on the first flexural natural frequency of beams is studied. Finite element technique is used to model the beam-tendon system, and the prestressing force is applied in the form of initial tension in the tendon. It is shown that the effect of prestressing force on the first natural frequency depends on bonded and unbonded nature of the tendon, and also on the eccentricity of tendon. For the beams with bonded tendon, the prestressing force does not have any appreciable effect on the first flexural natural frequency. However, for the beams with unbonded tendon, the first natural frequency significantly changes with the prestressing force and eccentricity of the tendon. If the eccentricity of tendon is small, then the first natural frequency decreases with the prestressing force and if the eccentricity is large, then the first flexural natural frequency increases with the prestressing force. Results of the present study clearly indicate that the first natural frequency can not be used as an easy indicator for detecting the loss of prestressing force, as has been attempted in some of the past studies.

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.