• Title/Summary/Keyword: Flexible routing

Search Result 85, Processing Time 0.018 seconds

Quantum Packet for the Next Generation Network/ISDN3

  • Lam, Ray Y. W.;Chan, Henry C. B.;Chen, Hui;Dillon, Tharam S.;Li, Victor O. K.;Leung, Victor C. M.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.316-330
    • /
    • 2008
  • This paper proposes a novel method for transporting various types of user traffic effectively over the next generation network called integrated services digital network 3 (ISDN3) (or quantum network) using quantum packets. Basically, a quantum packet comprises one or more 53-byte quanta as generated by a "quantumization" process. While connection-oriented traffic is supported by fixed-size quantum packets each with one quantum to emulate circuit switching, connectionless traffic (e.g., IP packets and active packets) is carried by variable-size quantum packets with multiple quanta to support store-and-forward switching/routing. Our aim is to provide frame-like or datagram-like services while enabling cell-based multiplexing. The quantum packet method also establishes a flexible and extensible framework that caters for future packetization needs while maintaining backward compatibility with ATM. In this paper, we discuss the design of the quantum packet method, including its format, the "quantumization" process, and support for different types of user traffic. We also present an analytical model to evaluate the consumption of network resources (or network costs) when quantum packets are employed to transfer loss-sensitive data using three different approaches: cut-through, store-and-forward and ideal. Close form mathematical expressions are obtained for some situations. In particular, in terms of network cost, we discover two interesting equivalence phenomena for the cut-through and store-and-forward approaches under certain conditions and assumptions. Furthermore, analytical and simulation results are presented to study the system behavior. Our analysis provides valuable insights into the. design of the ISDN3/quantum network.

Yet Another BGP Archive Forensic Analysis Tool Using Hadoop and Hive (하둡과 하이브를 이용한 BGP 아카이브 데이터의 포렌직 분석 툴)

  • Lee, Yeonhee;Lee, YoungSeok
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.541-549
    • /
    • 2015
  • A large volume of continuously growing BGP data files can raise two technical challenges regarding scalability and manageability. Due to the recent development of the open-source distributed computing infrastructure, Hadoop, it becomes feasible to handle a large amount of data in a scalable manner. In this paper, we present a new Hadoop-based BGP tool (BGPdoop) that provides the scale-out performance as well as the extensible and agile analysis capability. In particular, BGPdoop realizes a query-based BGP record exploration function using Hive on the partitioned BGP data structure, which enables flexible and versatile analytics of BGP archive files. From the experiments for the scalability with a Hadoop cluster of 20 nodes, we demonstrate that BGPdoop achieves 5 times higher performance and the user-defined analysis capability by expressing diverse BGP routing analytics in Hive queries.

Structural Design of Optical Access Network for IPOW Service (IPOW 서비스를 위한 광액세스망 구조 설계)

  • Lee, Sang-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5140-5147
    • /
    • 2013
  • This paper presents a new idea of structural design of the optical access network for IPOW(IP over WDM) services. More efficient network can be constructed, because the IP packets are transmitted directly to the WDM without going through an intermediate layer of networks. The wavelength Routing is based on a label switching technology. The ability to transmission of high volume traffics and QoS capability of the optical label switching directly to the end user of the IPOW optical internet networks is provided. As in AON(Active Optical Network) flexible bandwidth on demand subscribers is allocated. By the Simulation of the proposed optical access networks to measure the BER(Bits Error Ratio) at the end of the nodes the network characteristics are analyzed. These results are based on the design of efficient optical network.

Collision Avoidance and Deadlock Resolution for AGVs in an Automated Container Terminal (자동화 컨테이너 터미널에서의 AGV 충돌 방지 및 교착 해결 방안)

  • Kang, Jae-Ho;Choi, Lee;Kang, Byoung-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.25-43
    • /
    • 2005
  • In modern automated container terminals, automated guided vehicle (AGV) systems are considered a viable option for the horizontal tansportation of containers between the stacking yard and the quayside cranes. AGVs in a container terminal move rather freely and do not follow fixed guide paths. For an efficient operation of such AGVs, however, a sophisticated traffic management system is required. Although the flexible routing scheme allows us to find the shortest possible routes for each of the AGVs, it may incur many coincidental encounters and path intersections of the AGVs, leading to collisions or deadlocks. However, the computational cost of perfect prediction and avoidance of deadlocks is prohibitively expensive for a real time application. In this paper, we propose a traffic control method that predicts and avoids some simple, but at the same time the most frequently occurring, cases of deadlocks between two AGVs. More complicated deadlock situations are not predicted ahead of time but detected and resolved after they occur. Our method is computationally cheap and readily applicable to real time applications. The efficiency and effectiveness of our proposed methods have been validated by simulation.

  • PDF

Optimal Design of Network-on-Chip Communication Sturcture (Network-on-Chip에서의 최적 통신구조 설계)

  • Yoon, Joo-Hyeong;Hwang, Young-Si;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.80-88
    • /
    • 2007
  • High adaptability and scalability are two critical issues in implementing a very complex system in a single chip. To obtain high adaptability and scalability, novel system design methodology known as communication-based system design has gained large attention from SoC designers. NoC (Network-on-Chip) is such an on-chip communication-based design approach for the next generation SoC design. To provide high adaptability and scalability, NoCs employ network interfaces and routers as their main communication structures and transmit and receive packetized data over such structures. However, data packetization, and routing overhead in terms of run time and area may cost too much compared with conventional SoC communication structure. Therefore, in this research, we propose a novel methodology which automatically generates a hybrid communication structure. In this work, we map traditional pin-to-pin wiring structure for frequent and timing critical communication, and map flexible and scalable structure for infrequent, or highly variable communication patterns. Even though, we simplify the communication structure significantly through our algorithm the connectivity or the scalability of the communication modules are almost maintained as the original NoC design. Using this method, we could improve the timing performance by 49.19%, and the area taken by the communication structure has been reduced by 24.03%.