• Title/Summary/Keyword: Flexible routing

Search Result 85, Processing Time 0.02 seconds

A Mechanism for Configurable Network Service Chaining and Its Implementation

  • Xiong, Gang;Hu, Yuxiang;Lan, Julong;Cheng, Guozhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3701-3727
    • /
    • 2016
  • Recently Service Function Chaining (SFC) is promising to innovate the network service mode in modern networks. However, a feasible implementation of SFC is still difficult due to the need to achieve functional equivalence with traditional modes without sacrificing performance or increasing network complexity. In this paper, we present a configurable network service chaining (CNSC) mechanism to provide services for network traffics in a flexible and optimal way. Firstly, we formulate the problem of network service chaining and design an effective service chain construction framework based on integrating software-defined networking (SDN) with network functions virtualization (NFV). Then, we model the service path computation problem as an integer liner optimization problem and propose an algorithm named SPCM to cooperatively combine service function instances with a network utility maximum policy. In the procedure of SPCM, we achieve the service node mapping by defining a service capacity matrix for substrate nodes, and work out the optimal link mapping policies with segment routing. Finally, the simulation results indicate that the average request acceptance ratio and resources utilization ratio can reach above 85% and 75% by our SPCM algorithm, respectively. Upon the prototype system, it is demonstrated that CNSC outperforms other approaches and can provide flexible and scalable network services.

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

Genetic Algorithm for Job Shop Scheduling with Flexible Routing (경로 유연성을 가지는 Job Shop 일정계획에 대한 Genetic Algorithm)

  • 김정자;김상천
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.99-102
    • /
    • 2000
  • 전통적인 job shop 일정계획문제는 NP_hard 문제로 조합최적화 문제이다 일반적인 가정은 job이 방문하는 기계들의 경로가 고정되어 있다는 것이다. 경로 유연성을 가지는 job shop 일정계획문제는 job이 방문하는 기계들의 경로가 고정되어져 있지 않다는 것이다. 이러한 경우에 전통적인 job shop 문제를 복잡하게 만든다. 경로 유연성을 가지는 job shop 문제도 NP-hard 문제이다. 그러므로 휴레스틱이나 AI 기법들을 사용하는 하는 것이 불가피하게 되었다. 유전 알고리즘은 매우 복잡한 조합 최적화문제인 job shop 일정계획문제에 적용되어지고 있다. 이 논문은 최대완료시간(makespan)으로 경로 유연성을 가지는 job shop 일정계획문제를 풀기 위한 유전 알고리즘을 제시하고자 한다. 먼저 경로 유연성을 가지는 job shop 일정계획문제에 대한 정의를 내리고 유전 알고리즘을 구축하기 위한 첫 단계로 유전적 표현 즉, 개체 표현방법에 대해 설명하고 유전 연산자의 소개 그리고 알고리즘 재생과정을 제시하고 수치실험을 통해 알고리즘이 양질의 일정계획을 찾을 수 있다는 것을 보이고자 한다.

  • PDF

Design of ONU for EPON Based Access Network (EPON 액세스 망 기반의 ONU 설계)

  • 김용태;신동범;이형섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.633-636
    • /
    • 2003
  • An Ethernet passive optical network(EPON) is a point-to-multipoint optical network. EPONs leverage the low cost, high performance curve of Ethernet systems to provide reliable data, voice and video to end user at bandwidths far exceeding current access technologies. In this paper, we propose the economical and flexible structure of optical network unit(ONU) converting optical format traffic to the customer's desired format(Ethernet, VDSL, T1, IP multicast, etc.). A unique feature of EPONs is that in addition to terminating and converting the optical signal the ONU provide Layer 2-3 switching functionality, which allows internal routing of enterprise traffic at the ONU.

  • PDF

Design Alterntives for Robot-based Wire Harness Assembly Processes (산업용로보트를 이용한 자동전선망(wire harness) 조립시스템의 설계에 관한 연구)

  • Jo, Hyeong-Seok;Gwon, Dae-Gap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.77-92
    • /
    • 1986
  • Wire harness assembly is one of the most labor intensive processes in manufa- tuing, but the process has not been fully automated yet. In this paper a variety of concepts for flexible automated assembly system are suggested to design a robot- based wire harness assembly cell. All concepts are featuring an automatic, fedkng of wires, terminating routing, inserting and bundling. Based upon possible assembly methods and procedures, six alternative systems are proposed and, finally, evaluated10 from the view point of system performance such as flexibility, reliability assembly time and equipment cost.

  • PDF

Asymmetric Cascaded Coupled tine Couplers (비대칭 직렬 연결 결합선로 결합기)

  • Park Myun-Joo;Lee Byungje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.67-72
    • /
    • 2005
  • This work proposes a novel coupled line coupler structure based on the asymmetric cascaded connection of coupled lines. The proposed structure can be designed in smaller size than conventional single section coupled line couplers. Also, the additional design freedom offered by the proposed structure can serve many useful purposes such as the output phase control or the flexible coupler layout for complex circuit routing environments.

  • PDF

Datacenter-Oriented Elastic Optical Networks: Architecture, Operation, and Solutions

  • Peng, Limei;Sun, Yantao;Chen, Min;Park, Kiejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3955-3966
    • /
    • 2014
  • With the exponentially increasing Internet traffic and emergence of more versatile and heterogeneous applications, the design of datacenter networks (DCNs) is subject to unprecedented requirements for larger capacity and more flexible switching granularities. Envisioning Optical-Orthogonal Frequency Division Multiplexing (O-OFDM) as a promising candidate for such a scenario, we motivate the use of O-OFDM as the underlying switching technology in order to provide sufficient switching capacity and elastic bandwidth allocation. For this purpose, this article reviews the recent progresses of DCN deployment and assesses the scenario where the O-OFDM transmission and switching technology is employed in the underlying transport plane. We discuss the key issues of the datacenter-oriented O-OFDM optical networks, and in particular, elaborate on a number of open issues and solutions including system interconnection architecture, routing and resource assignment, survivability, and energy-efficiency.

Virtual System Buffer Model in Flexible Manufacturing Systems with an AGV System (AGVS를 포함한 FMS에서의 가상 시스템버퍼 모델에 관한 연구)

  • Kyung Sup Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.45-62
    • /
    • 1998
  • This research is concerned with buffer management in a multi-cell FMS with an AGVS. Buffers in manufacturing systems are required to reduce blocking and starving caused by breakdowns, variability in process times, and diversity of part routing. Due to the high per unit buffer cost, which primarily consists of floor space and equipment costs, the total capacity of buffers in and FMS is very limited. Proper buffer management can provide a high system efficiency. This paper presents a buffer management model for a multi-cell FMS with an AGVS and a simulation study to compare the proposed model to a conventional buffer management model in a job shop FMS.

  • PDF

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1996.05a
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF

Comparison of Three Evolutionary Algorithms: GA, PSO, and DE

  • Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight the common computational procedures. The general observations on the similarities and differences among the three algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode resource constrained project scheduling problems.