• Title/Summary/Keyword: Flexible material

Search Result 1,047, Processing Time 0.034 seconds

A study on elastomer coating technology for continuous gradient conductive surface (연속 구배형 전도성 표면 구현을 위한 탄성중합체 코팅에 관한 연구)

  • La, Moon-Woo;Yoon, Gil-Sang;Park, Sung-Jea
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • Recently, studies on the development of flexible electronic devices by combining flexible materials and a conductor have been actively performed as interest in wearable devices. Especially, carbon nanotubes (CNT) or graphene coating have been used to construct a circuit to induce improvement in flexibility and rigidity. Various technologies have been developed in the surface coating of conductive materials, which are key to the manufacture of flexible electronic devices. Surface coating products with 3D coating and micro-patterns have been proposed through electrospinning, electrification, and 3D printing technologies. As a result of this advanced surface coating technology, there is a growing interest in manufacturing gradient conductive surfaces. Gradient surfaces have the advantage that they are adapted to apply a gentle change or to inspect optimum conditions in a particular region by imparting continuously changing properties. In this study, we propose a manufacturing technique to produce a continuous gradient conductive surface by combining a partial stretching of elastomer and a conductive material coating, and introduce experimental results to confirm its performance.

Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite (유기-무기 하이브리드 압전 나노복합체 기반의 플렉서블 에너지 하베스터 제작 및 발전성능 평가)

  • Kwon, Yu Jeong;Hyeon, Dong Yeol;Park, Kwi-Il
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.371-377
    • /
    • 2019
  • A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.

A Study on the Thickness Dependence of p-type Organic Layer on the Current of Small Molecule-based Organic Photodiode (저분자 유기 광다이오드 소자의 p형 유기물 두께에 따른 전류 특성에 관한 연구)

  • Young Woo Kim;Dong Woon Lee;Yongmin Jeon;Eou-sik Cho;Sang Jik Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.101-105
    • /
    • 2023
  • Organic photo Diodes (OPDi) give multiple advantages in the growing interest of the flexible optoelectronic devices. Organic semiconductors are freeform as they can deposit on any substrate, so it could be flexible. But the inorganic material photodiodes (PDs) are usually fabricated on silicon wafers which are solid. So, normally PDs are inflexible. By those reasons, we decided to make the vacuum deposited small molecule OPDi. We have investigated the OPDi's J-V characteristic by changing the thickness of p-type layer of OPDi. This device consists of indium-tin-oxide (ITO) / 2,3:6,7-dibenzanthracene (pentacene) / buckminsterfullerene (C60) / aluminum (Al). Its J-V characteristics were measured in the probe station(4156C) that can give dark condition while measuring. And for the luminance characteristics, the photocurrent was measured with the bright halogen lamp and a probe station.

  • PDF

A Two-Phase Flow Accelerated Corrosion Study on Water Wall Tube of Coal-Fired Boiler According to Flexible Operation (유연운전에 따른 석탄화력보일러 수계통 튜브에서의 이상 유동가속부식(Two-Phase Flow Accelerated Corrosion) 고찰)

  • Sang-Ho Kim;Seung-Min Lee;Jae-Hong Lee
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.246-254
    • /
    • 2024
  • Recently, coal-fired power plants are experiencing many problems that they have never experienced before due to an increase in flexible operation. In particular, a two-phase flow accelerated corrosion on water wall tubes in a boiler has not been detected overseas or domestically. There is no response plan to deal with such corrosion problem either. However, oxide film damage and tube material corrosion due to a two-phase flow accelerated corrosion are being discovered on water wall boiler tubes of domestic coal-fired power plants recently. If this situation is severe, it can cause enormous damage such as tube rupture. Therefore, in this paper, in order to prepare a response plan for a two-phase flow accelerated corrosion on water wall tubes in the future, differences between a two-phase flow accelerated corrosion and a single-phase flow accelerated corrosion were investigated and an example of discovery of a two-phase flow accelerated corrosion on water wall tubes was presented.

Characteristics of amorphous IZTO-based transparent thin film transistors (비정질 IZTO기반의 투명 박막 트렌지스터 특성)

  • Shin, Han-Jae;Lee, Keun-Young;Han, Dong-Cheul;Lee, Do-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

Strain-imposed External Cavity Tunable Lasers Operating for NIR Wavelength

  • Kim, Jun-Whee;Kim, Kyung-Jo;Son, Nam-Seon;Oh, Min-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.172-176
    • /
    • 2013
  • For demonstrating widely tunable external cavity lasers operating for near-infrared (NIR) wavelength, a flexible polymer waveguide with an imbedded Bragg grating is incorporated. Due to the superior flexibility of the polymer material, the reflection wavelength of the Bragg grating is widely tunable by imposing tensile and compressive strains on the flexible Bragg grating. A third-order Bragg grating is formed on the device for facilitating the fabrication method. With a superluminescent laser diode as a gain medium of ECL, the tunable laser exhibited output power of -3 dBm and a tuning range of 32 nm.

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.

A Study on Development and Application of Waterproofing and repair material mixed Ruberic Asphalt Component With Adhesive and Swelling Performance (콘크리트 구조물의 누수방지를 위한 점착.팽창성 유연형 도막방수재의 개발 및 적용에 관한 연구)

  • 오상근;곽규성;이성일;강혜정
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.65-68
    • /
    • 2002
  • This study of concrete movement confronting a scope inspects the problems about the waterproofing method and leakage/repairement at present and research the mechanism with the variety of applying examples introducing adhesion and inflation using the flexible type of waterproofing and repairement and the substitution method developed with polymer resign composite. The polymer resign transmitted into adhesion or inflation materials under wet environment absorbs adjoining moisture, wraps impurities of concrete surface. get the waterproofing layer and concrete surface adhere toughly, reorganizes the impaired waterproofing layer and get over the detachment of it from concrete surface.

  • PDF

Design of a Dual-Drive Mechanism for Precision Gantry

  • Park, Heung-Keun;Kim, Sung-Soo;Park, Jin-Moo;Daehie Hong;Cho, Tae-Yeon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1664-1672
    • /
    • 2002
  • Gantry mechanisms have been widely used for precision manufacturing and material handling in electronics, nuclear, and automotive industries. Dual-drive servo mechanism is a way to increase control bandwidth, in which two primary axes aligned in parallel are synchronously driven by identical servo motors. With this mechanism, a flexible coupling (compliance mechanism) is often introduced in order to avoid the damage by the servo mismatch between the primary drives located at each side of gantry. This paper describes the design guidelines of the dual-drive servo mechanism with focus on its dynamic characteristics and control ramifications. That is, the effect on the system bandwidth which is critical on the system performance, the errors and torques exerted on guide ways in case of servo mismatch, the vibration characteristics concerned with dynamic error and settling time, and the driving force required at each axis for control are thoroughly investigated.

Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint

  • Li, Xin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.565-582
    • /
    • 2008
  • This paper presents a feasibility study of flexible piezoelectric paint for use in wide-band low-profile surface-mount or embeddable ultrasonic sensor for in situ structural health monitoring. Piezoelectric paint is a piezoelectric composite with 0-3 connectivity. Because of its ease of application, piezoelectric paint can be readily fabricated into sensing element with complex pattern. This study examines the characteristics of piezoelectric paint in acoustic emission signal and ultrasonic guided wave sensing. A series of ultrasonic tests including pitch catch and pencil break tests were performed to validate the ultrasonic wave sensing capability of piezoelectric paint. The results of finite element simulation of ultrasonic wave propagation, and acoustic emission generated by a pencil lead break on an aluminum plate are also presented in this paper along with corresponding experimental data. Based on the preliminary experimental results, the piezoelectric paint appears to offer a promising sensing material for use in real-time monitoring of crack initiation and propagation in both metallic and composite structures.