• Title/Summary/Keyword: Flexible material

Search Result 1,045, Processing Time 0.028 seconds

Fabrication of Flexible Photoluminescent Display for Improving Reliability

  • Choi, Kyung-Cheol;Kim, Seung-Hun;Jang, Cheol;Kim, Kuk-Joo;Ahn, Sung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.337-338
    • /
    • 2009
  • A flexible photoluminescent display device was proposed and fabrication technology with a low process temperature was investigated in order to improve its reliability. The proposed flexible photoluminescent display showed good characteristics in reliability and flexibility. The lifetime of the proposed flexible photoluminescent displays with organics components is estimated to be approximately more than 10,000 hours.

  • PDF

Durability of the Flexible Shape Memory Device (형상 기억 유연 소자의 내구성 평가에 관한 연구)

  • Yang, Hee-Kyung;Kim, Hae-Jin;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.36-40
    • /
    • 2015
  • The demand for flexible devices including solar cells, memories and batteries has increased rapidly over the past decades. In most flexible devices, polymer-based materials are used to enable the mechanical deformations such as bending or folding. Shape Memory Polymers (SMPs) is a high molecular compound polymer with flexibility and shape recovery characteristics. In this work, flexible shape memory device was fabricated by simply coating the conducting material, carbon nano-tube (CNT), on a shape memory polymer. Furthermore, durability of the device under various type of mechanical deformations was assessed. It is believed that the result of this work will aid in realization of a stretchable and wearable electronic device for practical applications.

Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes (나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지)

  • Kim, Jae-Yup
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.45-48
    • /
    • 2019
  • Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.

Analysis of Surface Characteristics for Clad Thin Film Materials (극박형 복합재료 필름의 표면 물성 분석에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.62-65
    • /
    • 2018
  • In the era of the 4th Industrial Revolution, IoT products of various and specialized fields are being developed and produced. Especially, the generation of the artificial intelligence, robotic technology Multilayer substrates and packaging technologies in the notebook, mobile device, display and semiconductor component industries are demanding the need for flexible materials along with miniaturization and thinning. To do this, this work use FCCL (Flexible Copper Clad Laminate), which is a flexible printed circuit board (PCB), to implement FPCB (Flexible PCB), COF (Chip on Film) Use is known to be essential. In this paper, I propose a transfer device which prevents the occurrence of scratches by analyzing the mechanism of wrinkle and scratch mechanism during the transfer process of thin film material in which the thickness increases while continuously moving in air or solution.

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

Fabrication of Flexible Micro LED for Beauty/Biomedical Applications (미용/의료용 유연 마이크로 발광 다이오드 디바이스 제작 공정)

  • Jae Hee Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.563-569
    • /
    • 2023
  • Micro light-emitting diodes (LEDs), with a chip size of 100 micrometers or less, have attracted significant attention in flexible displays, augmented reality/virtual reality (AR/VR), and bio-medical applications as next-generation light sources due to their outstanding electrical, optical, and mechanical performance. In the realm of bio-medical devices, it is crucial to transfer tiny micro LED chips onto desired flexible substrates with low precision errors, high speed, and high yield for practical applications on various parts of the human body, including someone's face and organs. This paper aims to introduce a fabrication process for flexible micro LED devices and propose micro LED transfer techniques for cosmetic and medical applications. Flexible micro LED technology holds promise for treating skin disorders, cancers, and neurological diseases.

The Support and Infill System of the Flexible Plan of Multi-Family Housing Based on Inhabitants' Need (거주자 요구를 토대로 본 가변형 아파트의 서포트와 인필 시스템)

  • Kim, Min-Kyung;Oh, Chan-Ohk
    • Journal of the Korean housing association
    • /
    • v.17 no.6
    • /
    • pp.129-140
    • /
    • 2006
  • The study suggests that to compensate for the variety of inhabitants, flexible housing plans are needed. Furthermore, it proposes the support and infill system for the flexible plan of multi-family housing based on the inhabitants need. The inhabitants' need for the flexible plan of multi-family housing was studied using a survey using models. The survey target was the 100 housewives living in a $126.6m^2$(sold as 45 Pyeong) Apartment in Busan. The characteristics of the respondents were first examined, then to figure out the attitude towards the need for the flexible plan of multi-family housing, the concept and preference for the plan, and the satisfaction level of the current apartment plan were analyzed. To find out the structure of the flexible plan of multi-family housing, the need for the structure, furniture, light, and finishing materials were studied. Lastly, to learn the durability of the construction material, the preferred moving period and the reasons were researched. On the basis of the findings, the support and infill system was suggested.

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

The Fabrication and Characteristics of White Emission using CCM on Flexible Substrate (플렉시블 무기EL 색변환 백색 발광 소자 제작 및 특성평가)

  • Kim, Gi-Ryoung;Ahn, Sung-Il;Kum, Jeong-Hun;Lee, Heung-Ryeol;Yim, Tae-Hong;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.911-915
    • /
    • 2008
  • EL (electro-luminescent) device as a light source has an advantage in embodying large area with great flexibility. On nickel foil as an electrode and backplane, we demonstrated a white EL flexible light source with blue phosphor layer combined with color change layer. A correlation between color change layer and color coordination was analyzed by Gaussian method, and then the color coordinate was controlled near to (0.33, 0.33) of pure white light.

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.