• Title/Summary/Keyword: Flexible manipulators

Search Result 83, Processing Time 0.026 seconds

Design of Nonlinear Observer for Flexible Joint Manipulator with Nonlinear Stiffness Based on Acceleration (비선형강성의 유연관절로봇을 위한 가속도기반 비선형관측기 설계)

  • Lee, Seung-Joon;Kim, Hyungjong;Nam, Kyung-Tae;Kuc, Tai-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.451-457
    • /
    • 2015
  • In this paper, we consider the observer design problem that truly reflects the nonlinear stiffness of the manipulators. The two key ideas of our design are that (a) estimation error dynamics of the manipulator equipped with accelerometer dose not dependent on nonlinearities at the link part, when the measured signals are the motor position and the output of the accelerometer and (b) the nonlinear stiffness is indeed a Lipschitz function. In order to effectively compensate the nonlinear stiffness, the gain of the proposed observer is carefully chosen from the ARE(algebraic Riccati equations) which depend on Lipschitz constant. Comparative simulation result verifies the effectiveness of the proposed solution.

Design of nonlinear robust observer for robots with joint elasticity (유연 조인트 로봇의 견실한 비선형 관측기 설계)

  • Kim, Dong-Hwan;Lee, Kyo-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.270-278
    • /
    • 1996
  • 복잡한 비선형성과 불확실한 변수를 가지는 유연 죠인트 로봇의 견실한 관측기 설계에 관한 연구이다. 시간 불변 또는 시간 가변성의 불확실한 변수들을 가지는 시스템에 적용한 경우이며 로봇 링크의 각도와 각속도들을 출력으로 하였다.본 견실 관측기는 리아프노프 방법에 기초를 두었으며 불확실한 변수들은 그값을 모르나 그 값들은 지정된 집합내에 존재한다. 제안된 견실 관측기는 실용적인 안정성을 보장한다. 관측기설계의 알고리즘을 2링크 유연 죠인트 로봇에 적용하여 시뮬레이션을 수행하여 우수한 성능을 가짐을 확인할수 있었다.

  • PDF

구속 받는 유연 매니퓨레이터의 병렬 위치/힘 제어

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • 본 논문에서는 환경에 구속 받는 유연 매니퓨레이터의 힘/위치에 대하여 논하고자 한다. 일반적으로, 유연 매니퓨레이터의 모델링 방법은 분포 정수 모델과 집중 정수 모델로 분류할 수 있다. 전자인 분포 정수 모델을 이용해서는 평면 1 링크, 2 링크를 대상으로 한 위치/힘 제어는 가능하나, 운동 방정식의 복잡성으로 인하여 실시간에서 다 링크 다 관절 유연 매니퓨레이터의 힘/위치를 제어하기는 어렵게 여겨져 왔다. 본 논문에서는 집중 정수 모델링 방법인 집중 스프링 질량 모델(Lumped Spring Mass Model)을 이용하여 환경에 구속받는 유연 매니퓨레이터의 운동 방정식을 산출했다 이 모델을 실험기인 유연 매니퓨레이터 ADAM(Aerospace Dual Arm Manipulators)에 적용하여 실시간 위치/힘 제어 실험을 행하였으며, MATLAB를 이용하여 해석했다. 또한, ADAMS$^{TM}$ FEM를 이용하여 분포 정수 모델을 도출하여, 해석하였으며, 이 결과와 집중 정수 모델을 이용한 MATLAB 해석의 결과, 그리고 실험 결과를 비교 분석하여 본 논문에서 제안한 구속받는 유연 매니퓨레이터의 집중 정수 모델 타당성을 입증시켰다.

  • PDF

High precision integration for dynamic structural systems with holonomic constraints

  • Liu, Xiaojian;Begg, D.W.;Devane, M.A.;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.283-295
    • /
    • 1997
  • This paper presents a high precision integration method for the dynamic response analysis of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved in the scheme is calculated precisely using $2^N$ algorithm. The Taylor expansions of the nonlinear term concerned with state variables of the structure and the generalized constraint forces of the ADEs are derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot manipulators.

Design of Robust Convolution Input Shaper for the Variation of Frequency and Damping Ratio (주파수와 감쇠비 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers have been considered robustness fur only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness fur the variation of frequency and damping ratio.

Rotation Speed and Torque Characteristics of Ultrasonic Motor by Phase difference (위상차에 의한 초음파 모터의 속도와 토오크 특성)

  • Kim, Dong-Ok;Ko, Nack-Yon;Choi, Han-Su;Cha, In-Su;Woo, Su-Yong;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.328-330
    • /
    • 1994
  • The Ultrasonic motor(USM) has many good characteristics such as high torque at low speed range, large holding torque based upon frictional force, high speed response, flexible free ferns, compactness in size, low magnetic noise and silentness in motion. Because of having low speed rotation, USM is good as an actuator of a small size direct drive (DD) manipulator. The acturators for the DD manipulators must have good controllability on the speed and torque from zero to maximum value continuously. New method was developed for speed and torque control by the phase difference control of the two-phase driving signals of the motor. Then rule adjustable compliant and dumped motion was realized on the output shaft of the motor by PD control of the output shaft angle.

  • PDF

T-S Fuzzy Model Based Robust Indirect Adaptive State Feedback Control of Flexible Joint Manipulators

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1471-1474
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

  • PDF

Design of Robust Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF

Tracking Control of RLFJ Robot Manipulator Using Only Position Measurements by Backstepping Method

  • Ji H. Uh;Jongn H. Oh;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.8-13
    • /
    • 1998
  • A tracking controller is presented for RLFJ(rigid link flexible joint) robot manipulators with only position measurements. The controller is developed based on the integrator backstepping design method and on the two observers: the first is simple linear form observer for the filtered link velocity errors and the other for the actuator velocities. The proposed controller achieves exponential tracking of link positions and velocities while keeping all internal signals bounded. It also guarantees exponential convergence of the estimated signals to their actual ones. Finally, simulation results are included to demonstrate the tracking performance.

  • PDF

Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors

  • Gao, Zhiyuan;Huang, Jiaqi;Miao, Zhonghua;Zhu, Xiaojin
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.559-567
    • /
    • 2020
  • Vibration at the tip of various flexible manipulators may affect their operation accuracy and work efficiency. To suppress such vibrations, the feasibility of using MFC actuators and sensors is investigated in this paper. Considering the convergence of the famous filtered-x least mean square (FXLMS) algorithm could not be guaranteed while it is employed for vibration suppression of plants with varying secondary path, this paper proposes a new multiple model switching adaptive control algorithm to implement the real time active vibration suppression tests with a new multiple switching strategy. The new switching strategy is based on a cost function with reconstructed error signal and disturbance signal instead of the error signal from the error sensor. And from a robustness perspective, a new variable step-size sign algorithm (VSSA) based FXLMS algorithm is proposed to improve the convergence rate. A cantilever beam with varying tip mass is employed as flexible manipulator model. MFC layers are attached on both sides of it as sensors and actuators. A co-simulation platform was built using ADAMS and MATLAB to test the feasibility of the proposed algorithms. And an experimental platform was constructed to verify the effectiveness of MFC actuators and sensors and the real-time vibration control performance. Simulation and experiment results show that the proposed FXLMS algorithm based multiple model adaptive control approach has good convergence performance under varying load conditions for the flexible cantilever beam, and the proposed FX-VSSA-LMS algorithm based multiple model adaptive control algorithm has the best vibration suppression performance.