• 제목/요약/키워드: Flexible link

검색결과 285건 처리시간 0.022초

유연한 링크를 가진 3자유도 로봇조작기 진동의 펴지제어 (Fuzzy Vibration Control of 3 DOF Robot Manipulator with Flexible Link)

  • 김재원;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3883-3891
    • /
    • 1996
  • Performance and productivity of robot manipulator can be improved by increasing its working speed and extending its link length. But heavy weght of the commercial robot links, considered as "rigid body", limits its mazimum working speed and the weght of the links can be reduced for high speed operation. But this light-weight link or long link for special use cannot be consideredas "rigid" structure and vibration of the link due to its flexibility causes errors in end-effector position and orientation. Thus the elastic behaviro of the flexible link should be taken care of for increasing work speed and getting smaller error of end-effector position. In this paper, the fuzzy control theory is selected to design the controller which controlos the joint positions of the robot manipulator and suppress the vibration of flexible link. In the forst place, for the 1 DOF flexible link system, the fuzzy control theory is implemented. The contdroller for the 1 DOF flexible link system is designed. Experimental research is carried out to examine the controllability and the validity of the fuzzy control theory based controller. Next, using the extended desing schemes for the case of the 1 DOF flexible link system and usign the experimental phenomena of the 3 DOF flexible link system, the fuzzy controller for the 3 DOF flexible link system is desinged and experimented.ed and experimented.

두 개의 유연 링크로 이루어진 2차원 구조물의 동적 모델링 및 실험 (Dynamic Modeling of Planar System Consisting of Two Flexible Links and Experiment)

  • 최민섭;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.865-874
    • /
    • 2016
  • This research is concerned with the experimental investigation on the vibrations of a flexible two-link system for verifying the theoretical result from simplified equations of motion for the system along with the kinematical synthesis are proposed to simulate the elastic vibrations of a previous study. The structure consists of flexible two-links; The link 2 is attached to the end of the link 1. The link 1 is made of composite fiber reinforced polymer and the link 2 is an aluminum beam. In order to verify the theoretical result, a flexible two-link system operated by the AC and RC servo motors was constructed. Experimental results show that the dynamic modeling approach and the kinematical synthesis proposed in this paper are effective.

두 개의 유연 링크 구조물의 조종 및 진동 계측 실험 (Experiment on Maneuvering and Vibration Measurement of Flexible Two-Link Structure)

  • 곽문규;최민섭;양동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.930-932
    • /
    • 2014
  • This research is concerned with the validity of a theoretical model that estimates the magnitude of vibration occurring when the flexible two-link structure is activated under control. The structure consists of flexible two-links; the sub link is attached to the end of the main link. The subject is to control flexible two-links and to measure the vibration for each flexible link structure. The result is that the vibration of the main structure affects that of the sub structure, similar to the theoretical outcome.

  • PDF

반력모멘트 추정기를 이용한 단일 링크 유연 조작기의 진동제어 (Vibration Control of a Single-Link Flexible Manipulator Using Reaction Moment Estimator)

  • 신호철;한상수;김승호
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, a novel vibration control scheme for a single-link flexible manipulator system without using a vibration feedback sensor is proposed. In order to achieve the vibration information of the flexible link, a reaction moment estimator based on the dynamic characteristics of the flexible manipulator is proposed. While the manipulator is maneuvering the reaction moment is reciprocally acting on the flexible link and the hub inertia due to the vibration of the link. A sliding mode controller based on the equivalent rigid body dynamics corresponding to the proposed flexible manipulator is then augmented with the reaction moment estimator to realize a decentralized control system. The reaction moment estimator is implemented via the first order low pass filter. The performance of the proposed control scheme is verified by computer simulation and experiment.

슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어 (Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator)

  • 최승복
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

Dynamic characterisation of a two-link flexible manipulator: theory and experiments

  • Khairudin, M.;Mohamed, Z.;Husain, A.R.;Mamat, R.
    • Advances in robotics research
    • /
    • 제1권1호
    • /
    • pp.61-79
    • /
    • 2014
  • This paper presents theoretical and experimental investigations into the dynamic modelling and characterisation of a two-link flexible manipulator incorporating payload. A planar two-link flexible manipulator that moves in a horizontal plane is considered. A dynamic model of the system is developed using a combined Euler-Lagrange and assumed mode methods, and simulated using Matlab. Experiments are performed on a lab-scaled two-link flexible manipulator for validation of the dynamic model and characterisation of the system. Two system responses namely hub angular position and deflection responses at both links are obtained and analysed in time and frequency domains. The effects of payload on the dynamic characteristics of the flexible manipulator are also studied and discussed. The results show that a close agreement between simulation and experiments is achieved demonstrating an acceptable accuracy of the developed model.

슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어 (Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control)

  • 채승훈;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

2-링크 유연한 로보트 팔에 대한 적응제어 (Adaptive control for two-link flexible robot arm)

  • 한종길;유병국;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.8-13
    • /
    • 1993
  • This paper presents deterministic and adaptive control laws for two-link flexible arm. The flexible arm has considerable structural flexibility. Because of its flexbility, dynamic equations are very complex and difficult to get, dynamic equations for two-link flexible arm are derived from Bernoulli-Euler beam theory and Lagrangian equation. Using the fact that matrix is skew symmetric, controllers which have a simplified structure with less computational burden are proposed by using Lyapunov stability theory.

  • PDF

수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구 (A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane)

  • 김종대;오석형;김기호;오재윤
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

유연 로보트팔의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis for Flexible Robotic Arms)

  • 김창부;유영선
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF