• 제목/요약/키워드: Flexible devices

검색결과 772건 처리시간 0.026초

에너지 변환 소재용 플렉서블 압전 나노섬유 연구 개발 동향 (Recent Research Trends of Flexible Piezoelectric Nanofibers for Energy Conversion Materials)

  • 지상현;윤지선
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.122-132
    • /
    • 2019
  • Wearable electronic devices with batteries must be lightweight, flexible and highly durable. Most importantly, the battery should be able to self-generate to operate the devices without having to be too frequently charged externally. An eco-friendly energy harvesting technology from various sources, such as solar energy, electromagnetic energy and wind energy, has been developed for a self-charging flexible battery. Although the energy harvesting from such sources are often unstable according to the surrounding environment, the energy harvesting from body movements and vibrations has been less affected by the surrounding environment. In this regard, flexible piezoelectric modules are the most attractive solution for this issue, because they convert mechanical energy to electrical energy and harvest energy from the human body motions. Among the various flexible piezoelectric modules, piezoelectric nanofibers have advantages when used as an energy harvester in wearable devices, due to their simple manufacturing process with good applicability to polymers and ceramics. This review focused on diverse flexible piezoelectric nanofibers and discusses their applications as various energy harvesting systems.

유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향 (Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film)

  • 임현수;오정민;김종웅
    • 마이크로전자및패키징학회지
    • /
    • 제28권1호
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

플렉서블 전자소재 산업 동향 (Flexible Electronic Materials Industry Trend)

  • 박종문;이수연;노태문;이정익;이진호
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.65-75
    • /
    • 2021
  • In the era of the 4th industrial revolution, interest in flexible devices is increasing for information and communication technology electronic products. This is a hot technology field in which competition is intensifying to preoccupy the global market for flexible electronic devices because of the many advantages of ultra-lightweight, flexibility, design diversity, high applicability, and low cost. Some flexible electronic products have been commercialized in Korea, but they are still inadequate in terms of price versus performance, so technology development is required continuously. Particularly, the development of flexible electronic materials is emerging as a key factor for flexible electronic device applications. In this study, we will look into the flexible electronic material technology and industry trends following the trend of flexible technology changes in the display, secondary battery, and solar cell, which has emerged as national core industry and has secured global competitiveness. In addition, I want to introduce the Flexible Electronic Material Center, which was established to foster the flexible electronic material industry.

Pixel isolated liquid crystal mode for flexible displays

  • Lee, Hyun-Gi;Jung, Jong-Wook;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.615-618
    • /
    • 2003
  • We developed a new device structure using anisotropic phase sepraration from liquid crystals (LCs) and polymer composite materials for flexible display applications. In the device, the LC molecules are isolated in pixels where LCs are surrounded by polymer layers. These devices show very good mechanical stability against external pressure. The electro-optic characteristics and the mechanical stability of the devices are discussed in view of the flexible display applications.

  • PDF

Si-nanoplate Transistors for Flexible Electronics

  • Kim, Mincheol;Han, Jungkyu
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.292-293
    • /
    • 2013
  • Sub 10-nm thick of Si plate is simulated with the software for Nanowire Field Effect Transistor (FET) device simulation. With usual single crystal Si technology, it is difficult to realize flexible electronic devices. Here, we suggest a FET device based on thinned Si layer. The simulation implied a practical limitation of the Si plate thickness for flexible devices as 2 nm. With around this thickness, Si plate may have much flexibility than existing bulk MOSFETs.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • 박귀일;이건재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

실리콘 나노리본을 이용한 유연한 패시브 매트릭스 소자 제작 (Fabrication of Flexible Passive Matrix by Using Silicon Nano-ribbon)

  • 신건철;하정숙
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.338-341
    • /
    • 2011
  • 대표적인 반도체 소재인 실리콘을 유연소자로 이용하기 위하여 매우 얇은 나노리본 형태로 제작하였다. p-타입과 n-타입 도핑 그리고 고유한 영역으로 구성된 실리콘 소자(p-i-n 접합소자)를 가로/세로 100라인씩 연결하여 총 10,000개의 어레이 소자를 구현하였고 그 크기는 대각선 1인치에 달했다. 이 패시브 매트릭스 소자는 p-n 접합 소자에 비해 교차 혼선에 의한 역전류가 적어 정류비가 $10_{4}$ 이상의 값을 나타내었다. 완성된 소자는 불산 처리를 통해 기판으로부터 쉽게 떼어낼 수 있으며, 각각 PDMS 와 유연한 PET 필름에 전이할 수 있었다.

Polymer semiconductor based transistors for flexible display

  • 이지열;이방린;김주영;정지영;박정일;정종원;구본원;진용완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.59.1-59.1
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) with printable semiconductors are promising candidate devices for flexible active-matrix (AM) display applications. Yet, stable operation of actual display panels driven by OTFTs has seldom been reported up to date. Here, we demonstrate a flexible reflective type polymer dispersed liquid crystal (PDLC) display, in which inkjet-printed OTFT arrays are used as driving elements with excellent areal uniformity in terms of device performance. As the active semiconductor, a novel, ambient processable conjugated copolymer was synthesized. The stability of the devices with respect to electrical bias stress was improved by applying a channel-passivation layer, which suppresses the environmental effects and hence reduces the density of trap states at the channel/dielectric interface. The combination of high performance and high stability OTFT devices enabled the successful realization of stable operating flexible color-displays by inkjet-printing.

  • PDF

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong;Oh, Il Kwon
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.355-364
    • /
    • 2018
  • Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

Effects of multi-stacked hybrid encapsulation layers on the electrical characteristics of flexible organic field effect transistors

  • 설영국;허욱;박지수;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio ($I_{on}/I_{off}$), leakage current, threshold voltage, and hysteresis, under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stabilities of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers were investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic layer deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to $10^5$ times with 5mm bending radius. In the most of the devices after $10^5$ times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the $I_{on}/I_{off}$ and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF