• Title/Summary/Keyword: Flexible Textile Composites

Search Result 7, Processing Time 0.024 seconds

Analysis of Flexible Textile Composites with Large Shear Deformation (전단 대변형을 고려한 유연직물복합재료 해석)

  • Suh, Young-Wook;Woo, Kyeong-Sik;Kang, Wang-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.734-739
    • /
    • 2008
  • In this study, the nonlinear mechanical behavior of flexible textile composites was predicted by two-step analyses: micromechanics and mesomechanics. The effective material properties for fiber tows of flexible textile composite lamina were calculated in micromechanics, which were then used to calculate the effective tensile stress-strain curve of flexible textile composites in mesomechanics. A user defined material algorithm was developed and inserted in ABAQUS to account for the geometric non-linearity due to the large rotation and shear deformation of fiber tows in mesomechanics. It was found that the stress-strain behavior of flexible textile composites exhibited significant non-linearity. The effective tensile modulus agreed well with the test result.

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Modeling of Anisotropic Creep Behavior of Coated Textile Membranes

  • Yu Woong-Ryeol;Kim Min-Sun;Lee Joon-Seok
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • The present study aims at characterizing and modeling the anisotropic creep behavior of coated textile membrane, a class of flexible textile composites that are used for moderate span enclosures (roofs and air-halls). The objective is to develop a creep model for predicting the lifetime of coated textile membrane. Uniaxial creep tests were conducted on three off-axis coupon specimens to obtain the directional creep compliance. A potential with three parameters is shown to be adequate for modeling the anisotropic creep behavior of coated textile membrane. Furthermore, a possibility of predicting the creep deformation of coated textile membrane in a multi-axial stress state is discussed using the three-parameter potential.

Comparison of the Properties of Molecular Composites Blends of Poly(vinyl alcohol)/Conducting Polymer (폴리비닐알콜/전도성고분자 분자복합체와 블렌드의 물성 비교)

  • Kwon, Ji-Yun;Kim, Young-Hee;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-32
    • /
    • 2001
  • Conductive polymers(CPs) are a relatively new class of organic materials displaying as their foremost property a high conductivity combined with very light weight, flexibility and reasonably facile processability[1]. Due to their high conductivity/weight ratio, they have recently evinced much interest in potential application as EMI shielding screens, coatings or jackets for flexible conductors, rechargeable batteries and as possible substitutes for metallic conductors or semiconductors in wide variety of electrical devices[2]. (omitted)

  • PDF

Feasibility Check of Textile Sensor Made of P(VDF-TrFE) for Structural Health Monitoring of Composite Structures (복합재료 구조물의 건전성 모니터링을 위한 P(VDF-TrFE) 직물센서의 가능성 평가)

  • Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.126-131
    • /
    • 2017
  • For structural health monitoring of a complex shaped structure a new sensor that can compensate for the drawbacks of the current sensors such as brittleness is needed and the sensor should be highly flexible and durable. In this study a textile sensor made of polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) which is a type of electroactive polymer was fabricated. And the textile sensors were applied to a complex shaped structure (an egg-box panel made of carbon/epoxy composite) for checking their feasibility of structural health monitoring. To correlate the collapse response with failure mechanisms of the structure the multiply-interrupted compressive test was carried out. During the test, the textile sensors succeeded to prove their applicability for damage detection (crack initiation) by generating electric voltages (0.05 V-0.25 V) in the real time.

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix (BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구)

  • Bae, Jun Ho;Ham, Seong Su;Park, Sung Cheol;Park, and Kwi-Il
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.