• Title/Summary/Keyword: Flexible Manufacturing

Search Result 837, Processing Time 0.03 seconds

Development of a irradiation strategy within a closed loop control system for the laser adjustment of deformation

  • Hutterer, A.;Hagenah, H.;Geiger, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2313-2318
    • /
    • 2003
  • By means of flexible forming processes in sheet metal manufacturing it is possible to produce parts of complex geometry within short manufacturing time. These procedures are suitable especially for prototyping or adjustment of deformation. Here formative procedures like laser forming are increasingly important, because they make the large-scale-like production of the prototypes with the required materials possible. High accuracy and reproducibility of the products is the precondition of the production. Due to the lack of a forming tool, complex geometries can hardly be manufactured within tolerances. To overcome this problem an automatic closed loop control system for the adjustment of deformations has been developed. An important element of the closed loop control system is the definition of a suitable irradiation strategy for laser forming. For the determination of the irradiation strategy a lot of influences must be taken into consideration from the field of material, geometry and laser. In this paper the improved closed loop control system and the development of an irradiation strategy for 4 mm deep buckles in an ALMgSi1 sheet will be represented. This system can be used e.g. in the automated adjustment of hail damage in car bodies or deformation by heat treatment.

  • PDF

Programming of adaptive repair process chains using repair features and function blocks

  • Spocker, Gunter;Schreiner, Thorsten;Huwer, Tobias;Arntz, Kristian
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • The current trends of product customization and repair of high value parts with individual defects demand automation and a high degree of flexibility of the involved manufacturing process chains. To determine the corresponding requirements this paper gives an overview of manufacturing process chains by distinguishing between horizontal and vertical process chains. The established way of modeling and programming processes with CAx systems and existing approaches is shown. Furthermore, the different types of possible adaptions of a manufacturing process chain are shown and considered as a cascaded control loop. Following this it is discussed which key requirements of repair process chains are unresolved by existing approaches. To overcome the deficits this paper introduces repair features which comprise the idea of geometric features and defines analytical auxiliary geometries based on the measurement input data. This meets challenges normally caused by working directly on reconstructed geometries in the form of triangulated surfaces which are prone to artifacts. Embedded into function blocks, this allows the use of traditional approaches for manufacturing process chains to be applied to adaptive repair process chains.

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

A Study on the Selection of Highly Flexible Blanket for Reverse Offset Printing (Reverse Offset Printing용 고신축성 Blanket 재료 선정에 관한 연구)

  • Shin, Seunghang;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.121-127
    • /
    • 2021
  • Reverse offset printing is considering as an emerging technology for printed electronics owing to its environmentally friendliness and cost-effectiveness. In reverse offset printing, selecting the materials for cliché and blanket is critical because of its minimum resolution, registration errors, aspect ratio of reliefs, pattern area, and reusability. Various materials such as silicon, quartz, glass, electroplated nickel plates, and imprinted polymers on rigid substrates can be used for the reverse offset printing of cliché. However, when new structures are designed for specific applications, new clichés need to re-fabricated each time employing multiple time-consuming and costly processes. Therefore, by modifying the blanket materials containing the printing ink, several new structures can be easily created using the same cliché. In this study, we investigated various elastomeric materials and evaluated their applicability for designing a highly stretchable blanket with controlled elastic deformation to implement tunable reverse offset printing.

Development of Distributed Smart Data Monitoring System for Heterogeneous Manufacturing Machines Operation (이종 공작기계 운용 관리를 위한 분산 스마트 데이터 모니터링 시스템 개발)

  • Lee, Young-woon;Choi, Young-ju;Lee, Jong-Hyeok;Kim, Byung-Gyu;Lee, Seung-Woo;Park, Jong-Kweon
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1175-1182
    • /
    • 2017
  • Recent trend in the manufacturing industry is focused on the convergence with IoT and Big Data, by emergence of the 4th Industrial Revolution. To realize a smart factory, the proposed system based on MTConnect technology collects and integrates various status information of machines from many production facilities including heterogeneous devices. Also it can distribute the acquisited status of heterogeneous manufacturing machines to the remote devices. As a key technology of a flexible automated production line, the proposed system can provide much possibility to manage important information such as error detection and processing state management in the unmanned automation line.

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.

Design and Control of a Biomimetic Fish Robot (생체 모방 로봇 물고기의 설계와 제어에 관한 연구)

  • Kim, Young-Jin;Kim, Seung-Jae;Yang, Kyung-Sun;Lee, Jeong-Min;Yim, Chung-Hyuk;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper introduces the mechanical design, fabrication, and control of a biomimetic fish robot whose driving motions resemble a real fish's flexibility and movement. This robot uses two motors create flexible movement like that of a fish. Several schemes, such as neutral buoyancy, fast underwater swimming, and direction changes, are introduced. The tail of the fish robot is made of a polymer material for flexible movement. The interior of the tail contains a joint and a wire. A sine wave command was applied to the tail to produce motion resembling a real fish swimming, and a buoy control device was installed. The up and down motion of the robot fish was controlled using this device.

Decision Tree based Scheduling for Static and Dynamic Flexible Job Shops with Multiple Process Plans (다중 공정계획을 가지는 정적/동적 유연 개별공정에 대한 의사결정 나무 기반 스케줄링)

  • Yu, Jae-Min;Doh, Hyoung-Ho;Kwon, Yong-Ju;Shin, Jeong-Hoon;Kim, Hyung-Won;Nam, Sung-Ho;Lee, Dong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans. The problem is to determine the operation/machine pairs and the sequence of the jobs assigned to each machine. Two decision tree based scheduling mechanisms are developed for static and dynamic flexible job shops. In the static case, all jobs are given in advance and the decision tree is used to select a priority dispatching rule to process all the jobs. Also, in the dynamic case, the jobs arrive over time and the decision tree, updated regularly, is used to select a priority rule in real-time according to a rescheduling strategy. The two decision tree based mechanisms were applied to a flexible job shop case with reconfigurable manufacturing cells and a conventional job shop, and the results are reported for various system performance measures.

5-3: [Invited] Roll-to-Roll Manufacturing of Electronics on Flexible Substrates Using Self-Aligned Imprint Lithography (SAIL)

  • Kim, Han-Jun;Almanza-Workman, Marcia;Chaiken, Alison;Elder, Richard;Garcia, Bob;Jackson, Warren;Jeans, Albert;Kwon, Oh-Seung;Luo, Hao;Mei, Ping;Perlov, Craig;Taussig, Carl;Jeffrey, Frank;Beacom, Kelly;Braymen, Steve;Hauschildt, Jason;Larson, Don
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.82-85
    • /
    • 2008
  • We are working towards large-area arrays of thin film transistors on polymer substrates using roll-to-roll (R2R) processes exclusively. Self-aligned imprint lithography (SAIL) is an enabler to pattern and align submicron features on meter-scaled flexible substrates in the R2R environment. The progress, current status and remaining issues of this new fabrication technology are presented.

  • PDF

Novel flexible reflective color media with electronic inks

  • Koch, Tim;Yeo, Jong-Souk;Zhou, Zhang-Lin;Liu, Qin;Mabeck, Jeff;Combs, Gregg;Korthuis, Vincent;Hoffman, Randy;Benson, Brad;Henze, Dick
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • A novel architecture and proprietary electronic inks were developed to provide disruptive digital-media solutions based on an electrokinetic technology platform. The flexible reflective electronic media (eMedia) was fabricated by imprinting three-dimensional microscale structures with a roll-to-roll manufacturing platform. The HP technologies enable the required attributes for eMedia, such as low power, transparency, print-quality color, continuous levels of gray, and lowcost scalability. Pixelation was also demonstrated by integrating with the prototype oxide thin-film transistor backplane, and the system architecture was further developed by stacking primary-colorant layers for color reflective-display application. The innovations described in this paper are currently being developed further for the eSkins, eSignage, and ePaper applications.