• Title/Summary/Keyword: Flexible Film

Search Result 891, Processing Time 0.028 seconds

Fabrication of Flexible Thin Film Diode Devices for Plastics film LCO (플라스틱 필름 LCD용 연성 박막 다이오드 소자 제작)

  • 이찬재;홍성제;한정인;김원근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.218-221
    • /
    • 2002
  • We have successfully developed the high performance flexible thin film diode device for flexible plastic film LCD. For flexible LCD, TFD device must be normally operated under any deformation state. Two type devices, Ti/Ta$_2$O$\sub$5//Ta and Al/Ta$_2$O$\sub$5//Al were fabricated and the symmetry and reliability of those were estimated under various measurement conditions including severely bending states.

  • PDF

Preparation of AZO thin film on the flexible substrate (Flexible 기판을 이용한 AZO 박막제작)

  • Cho, Bum-Jin;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.281-282
    • /
    • 2005
  • The AZO thin film was prepared on flexible substrate by Facing Targets Sputtering method. The substrate used the Polycarbonate(PC), thickness 200$\mu$m. In particular, the AZO thin film was prepared at room temperature because the substrate is weak in heat. The structural, electrical, optical properties of the AZO thin film were investigated and the surface was observed by microscope.

  • PDF

Flexible Antenna Radiator Fabricated Using the CNT/PVDF Composite Film (CNT/PVDF 복합막을 이용한 유연소자용 안테나 방사체)

  • Kim, YongJin;Lim, Young Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.196-200
    • /
    • 2015
  • In this paper, we fabricated flexible antenna radiator using the CNT/PVDF (carbon nanotube / polyvinylidene fluoride) composite film. We used polymer film as a matrix material for the flexible devices, and introduced CNTs for adding conductivity into the film resulting in obtaining performances of the antenna radiator. Spray coating method was used to form the CNT/PVDF composite radiator, and pattern formation of the radiator was done by shadow mask during the spray coating process. We investigated the electrical properties of the CNT/PVDF composite films with the CNT concentration, and also estimated the radiator performance. Finally we discuss the feasibility of the CNT/PVDF composite radiator for the flexible antenna.

A study on electromechanical properties of CNT conductive film deposited on flexible substrate (유연 모재 위에 증착된 CNT 전도성 필름의 전기-기계적 특성에 대한 연구)

  • Song, Sun-Ah;Kim, Jae-Hyun;Lee, Hak-Joo;Song, Jin-Woo;Chang, Won-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.35-39
    • /
    • 2008
  • In this study, electromechanical properties of carbon nanotube (CNT) thin film on flexible substrates were measured using a micro-tensile machine with functionality of simultaneous measurements of displacement, load and electrical resistance. The CNT thin film of about 100 nm thick was deposited on flexible substrates, polyethylene terephthalate (PET) using spraying and ink-jetting techniques. To investigate the effect of process condition on the electromechanical properties of CNT thin film, sets of CNT samples were fabricated under various heat treatments and microwave process. The microstructures of the CNT thin film before and after tensile test were investigated using Scanning Electron Microscope (SEM), and the failure modes of the CNT thin films were identified to understand their electromechanical behaviors and interaction with the flexible substrates. Based on the experimental results, the use of CNT thin film as flexible electrodes and strain gages is discussed.

  • PDF

Development of Micro-hemisphere Flexible PDMS Film for Enhancing Light Extraction in Organic Light-emitting Devices (유기발광소자의 광추출 향상을 위한 미세 반구형 유연 필름 연구)

  • Baek, Dong-Hyun;Bae, Eun-Jeong;Maeng, Hyeongkyu;Shin, Ji Soo;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2022
  • We presented a micro hemi-sphere structure flexible film to improve the external quantum efficiency (EQE) in OLEDs. The micro hemi-sphere flexible film was fabricated with breath figure (BF) method and replica process. At 45 mg/mL of concentration, the size of the hemi-spheres was approximately 6.2 ㎛ were obtained which are the most circular shape. So, it was possible to yield the best performance with an improvement of 33 % in the EQE and the widest viewing angle ranging from 0° to 70°. As a result, the hemi-sphere film's size and distribution seem to play important roles in enhancing the EQE in OLEDs. Furthermore, the flexible hemi-sphere film based on polymeric materials could offer an effective, large-scale, mass-produced product and a simple process and approach to achieve high efficiency in flexible OLEDs.

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • Lee, U-Jae;Yun, Eun-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF

The Study on Flexible Embedded Components Substrate Process Using Bonding Film (Bonding Film을 이용한 Flexible 부품 내장형 기판 제작에 관한 연구)

  • Jung, Yeon-Kyung;Park, Se-Hoon;Kim, Wan-Joong;Park, Seong-Dae;Lee, Woo-Sung;Lee, Kyu-Bok;Park, Jong-Chul;Jung, Seung-Boo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.178-178
    • /
    • 2009
  • 전자제품의 고속화, 고집적화, 고성능이 요구되어짐에 따라 IC's 성능 향상을 통해 패키징 기술의 소형화를 필요로 하고 있어 소재나 칩 부품을 이용해 커패시터나 저항을 구현하여 내장시키는 임베디드 패시브 기술에 대한 연구가 많이 진행되어 지고 있다. 본 연구에서는 3D 패키징이 가능한 flexible 소재에 능, 수동 소자를 내장하기 위한 다층 flexible 기판 공정 기술에 대한 연구를 수행하였다. 기판제작을 위해 flexible 소재에 미세 형성이 가능한 폴리머 필름을 접착하였고 flexible 위에 후막 저항체 패턴을 퍼|이스트를 이용하여 형성하였다. 또한, 능동소자 내장을 위해 test chip을 제작하여 플립칩 본더를 이용해 flexible 기판에 접합한 후에 bonding film을 이용한 build up 공정을 통해 via를 형성하고 무전해 도금 공정을 거쳐 전기적인 연결을 하였다. 위의 공정을 통해 앓고 가벼울 뿐만 아니라 자유롭게 구부러지는 특성을 갖고 있는 능, 수동 소자 내장형 flexible 기판의 변형에 따른 전기적 특성을 평가하였다.

  • PDF

Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors (투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발)

  • Kwon, Soon Yeol;Jung, Dong Geon;Choi, Young Chan;Lee, Jae Yong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

가스압 변화에 따라 flexible 기판상에 제작한 Al이 첨가된 ZnO 박막의 특성

  • Kim Gyeong-Hwan;Jo Beom-Jin;Geum Min-Jong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.164-167
    • /
    • 2006
  • In this paper, we prepared Al doped ZnO thin films by using facing targets sputtering method. Al doped ZnO thin film was deposited with different working pressure on flexible substrate. We prepared Al doped ZnO thin film at room temperature, because the flexible substrate has weak thermal resistance. From the results, we could obtain thin film with a resistivity of $8.4{\times}10^{-4}{\Omega}cm$, an average transmittance of over 80% and a film thickness of 200nm.

  • PDF

Analysis of Surface Characteristics for Clad Thin Film Materials (극박형 복합재료 필름의 표면 물성 분석에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.62-65
    • /
    • 2018
  • In the era of the 4th Industrial Revolution, IoT products of various and specialized fields are being developed and produced. Especially, the generation of the artificial intelligence, robotic technology Multilayer substrates and packaging technologies in the notebook, mobile device, display and semiconductor component industries are demanding the need for flexible materials along with miniaturization and thinning. To do this, this work use FCCL (Flexible Copper Clad Laminate), which is a flexible printed circuit board (PCB), to implement FPCB (Flexible PCB), COF (Chip on Film) Use is known to be essential. In this paper, I propose a transfer device which prevents the occurrence of scratches by analyzing the mechanism of wrinkle and scratch mechanism during the transfer process of thin film material in which the thickness increases while continuously moving in air or solution.