• Title/Summary/Keyword: Flexible Control

Search Result 1,884, Processing Time 0.027 seconds

Control of a Flexible Link with Time Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1136-1141
    • /
    • 2004
  • This paper presents a control method for time-delay systems and verifies the performance of the designed control system via real experiments. Specifically, the control method is applied to a flexible-link system with time delays. The method combines time- and frequency-domain controllers: linear quadratic optimal controller (or LQR) and lag compensator. The LQR is used to stabilize the system in optimal fashion, whereas the lag compensator is used to compensate time-delay effects by increasing the delay margin of the system. With this methodology, the maximum allowable time delay can be increased significantly. The proposed method is simple but quite practical for time-delay system control as it is based on the conventional loop-shaping method, which gives practical insights on delay-phase relationship. Simulation and experiment results show that the method presented in this paper is feasible and practical.

  • PDF

Adaptive Vibration Control of Flexible One-Lind Manipulator (유연한 단일링크 조작기의 적응진동제어)

  • 박영욱;김재원;박영필
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1995
  • Recently, since robot manipulator becomes faster and lighter, its link is no longer regarded as rigid body, and robot controller which only controls robot position cannot reduce vibration of the flexible link. Therefore vibration control is needed in robot manipulator control in addition to position control. In the case that tip mass changes when robot manipulator in working, it is clear that the efficiency of the vibration/position controller designed for the fixed system goes down. In this paper, the system with time varying parameters, adaptive control theory is adopted which estimates parameters changed by the variation of the tip mass and re-calculates the gain of the controller. Validify of the proposed adaptive controller and capability of the estimator are evaluated by computer simulations and experiments. Comparison results of the optimal controller for the fixed system and proposed adaptive controller and carried out.

  • PDF

New Robust Control Fesigns of Robot Manipulators (로봇 매니퓰레이터의 새로운 견실제어기 설계)

  • ;Ye-Hwa, Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.666-671
    • /
    • 1993
  • A new robust control law is proposed for uncertain rigid robots and two composite robust control laws for flexible-joint manipulators which contain uncertainties. The uncertainty, is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, function, payload change, and external disturbances are all addressed. Based only on the possible bound of the uncertainty, a robust controller is constructed for the rigid counterpart of the flexible-joint robot Some feedback control terms are then added to the robust control law to stabilize the elastic vibrations at the joints. To show that the proposed composite robust control laws are indeed applicable to flexible-joint robots, a singular perturbation approach and the stability study based on Lyapunov function are proposed.

  • PDF

A Study on Simple Adaptive Control of Flexible-Joint Robots Considering Motor Dynamics (모터 동역학식을 고려한 유연 연결 로봇의 간단한 적응 제어에 관한 연구)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1103-1109
    • /
    • 2008
  • Since the flexible joint robots with motor dynamics are represented by the fifth-order nonlinear sγstem, it is difficult and complex to design the controller for electrically driven flexible-joint (EDFJ) robots. In this paper, we propose a simple adaptive control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. For the simple control design, the dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. It is proved that all signals in the controlled closed-loop system are uniformly ultimately bounded. Simulation results for three-link EDFJ manipulators are provided to validate the effectiveness of the proposed control system.

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

Active vibration control of a flexible cantilever beam using Filtered-x LMS algorithm (Filtered-x LMS 알고리즘을 이용한 유연한 외팔보의 능동진동제어)

  • 박수홍;홍진석;김흥섭;오재응
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.107-113
    • /
    • 1997
  • This paper presents the active control of a flexible cantilever beam vibration. The cantilever beam was excitied by a steady-state harmonic and white noise point force and the control was performed by one piezo ceramic actuator bonded to the surface of the beam. An adaptive controller based on filtered-x LMS algorithm was used and the controller was defined by minimizing the square of the response of error sensor. In the experiment, gap sensor was used as an error sensor while the sinusoidal or white noise was applied as a disturbance. In the case of sinusoidal input, more than 20 dB of vibration reduction was achieved over all range of the natural frequencies and it takes 5 seconds to control the vibration at first natural frequency and 1 second at other natural frequencies. In the case of white noise input, 7 dB of vibration reduction was achieved at the first natural frequency and good control performance was achieved in the considered whole frequency range. Results indicate that the vibration of a flexible cantilever beam could be controlled effectively when the piezo ceramic actuator was used with filtered-x LMS algorithm.

  • PDF

Tip Position Control of a Flexible Cantilever Based on Kalman Estimation Using an Accelerometer (가속도계를 이용한 칼만 추정 기반의 유연 외팔보의 종단 제어)

  • Kim, Gook-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.591-598
    • /
    • 2011
  • Tip position control of a flexible cantilever is difficult due to the non-minimum phase dynamics that result from the finite propagating speed of a mechanical wave along the cantilever. In this paper, we propose a method for the tip position control using a light and cheap accelerometer that does not bring any significant change to the dynamics of the cantilever system. The linear system identification model of the flexible cantilever is obtained with measurements by a laser displacement sensor. A Kalman estimator is designed with this model and calculates the estimated tip position with the acceleration data of the accelerometer that is attached on the tip of the cantilever. To verify reliability of the estimator, the estimated tip position is used to the feedback control system that uses a fuzzy logic controller. The control results are compared with those of the fuzzy control system where the real tip position is measured by a laser displacement sensor. Also, the performance of the estimator with the accelerometer is presented and discussed.

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Development of a Flexible Critical Pathway with Electronic Medical Record for Gastrectomy Patients in a University Hospital (위 절제술 환자의 진료계획표 개발 및 전자 의무 기록화)

  • Bae, Myung Sun;Song, Jung Hup
    • Quality Improvement in Health Care
    • /
    • v.18 no.1
    • /
    • pp.37-55
    • /
    • 2012
  • Objectives : This study was conducted to evaluate the effect of fixed critical pathway with emr (electronic medical record) on the length of hospital stay, the cost and quality of care provided to gastrectomy patients in a university hospital and to develop flexible critical pathway with emr which can be used excluded or drop-out patients. Methods : Thirty-eight patients with gastrectomy were included as case group and Thirty-four patients included as control group. The comparison between control and case with using fixed critical pathway were done. To develop and to evaluate usefulness of flexible critical pathway with flexible data base, simulation was done for flexible critical pathway with drop-out patients. Result : The major results of this study were as follows: There were no significant differences in patient clinical conditions and no sign of deterioration of quality from critical pathway. The length of hospital stay was 11 days in control group, 8 days in path group(P<0.01). The total costs during the hospital stay were reduced in path group. However the cost per day was significantly increased from reduction of hospital stay(554,352 won in control, 645,669 won in path group). One hundred percentage of drop out patients(60) in the simulation of flexible critical pathway was successful. Conclusion : Computerized critical pathway reduced the length of hospital stay, total hospital costs and resource utilization without harming quality of patient care. The flexible critical pathway program can be used as one of the powerful management tools for reducing the practice variations and increasing the efficiency of care process and decreasing the workload of doctors and nurses in Korean hospital settings.

  • PDF