• Title/Summary/Keyword: Flexible Base

Search Result 308, Processing Time 0.025 seconds

A Process Decomposition Strategy for Qualitative Fault Diagnosis of Large-scale Processes (대형공정의 정성적 이상진단을 위한 공정분할전략)

  • Lee Gibaek
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.42-49
    • /
    • 2000
  • Due to their size and complexity, it is very difficult to make diagnostic system for the whole chemical processes. Therefore, a systematic approach is required to decompose larpge-scale process into sub-processes and then diagnose them. This paper suggests a method for the minimization of knowledge base and flexible diagnosis to be used in qualitative fault diagnosis based on Fault-Effect Tree model. The system can be decomposed for flexible diagnosis, size reduction of knowledge base, and consistent construction of complex knowledge base. The new node, gate-variable, is introduced to connect the cause-effect relationships of each sub-process. For on-line diagnosis, off-line analysis is performed to construct Fault-Effect Trees of gate-variables as well as activation conditions of gate-variables. On-line diagnosis strategy is modified to get the same diagnosis result without system decomposition. The proposed method is illustrated with a fault diagnosis system for a large-scale boiler plant.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures in a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • Han, Jaehyuk;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.251-258
    • /
    • 2005
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings (HDB) in an HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Reynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigen value problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

Proportionally fair load balancing with statistical quality of service provisioning for aerial base stations

  • Shengqi Jiang;Ying Loong Lee;Mau Luen Tham;Donghong, Qin;Yoong Choon Chang;Allyson Gek Hong Sim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.887-898
    • /
    • 2023
  • Aerial base stations (ABSs) seem promising to enhance the coverage and capacity of fifth-generation and upcoming networks. With the flexible mobility of ABSs, they can be positioned in air to maximize the number of users served with a guaranteed quality of service (QoS). However, ABSs may be overloaded or underutilized given inefficient placement, and user association has not been well addressed. Hence, we propose a three-dimensional ABS placement scheme with a delay-QoS-driven user association to balance loading among ABSs. First, a load balancing utility function is designed based on proportional fairness. Then, an optimization problem for joint ABS placement and user association is formulated to maximize the utility function subject to statistical delay QoS requirements and ABS collision avoidance constraints. To solve this problem, we introduce an efficient modified gray wolf optimizer for ABS placement with a greedy user association strategy. Simulation results demonstrate that the proposed scheme outperforms baselines in terms of load balancing and delay QoS provisioning.

Polymer Electrolyte Membranes for Flexible Electrochromic Device (플렉시블 전기변색 소자를 위한 고분자 전해질 멤브레인)

  • Lee, Ji-Hyeon;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.333-341
    • /
    • 2020
  • In this study, the optimum design conditions of a polymer electrolyte membrane for application to a flexible electrochromic device (ECD) were tried to be derived. Polyvinyl butyral (PVB) with excellent adhesive property and transparency was selected as the base polymer for the preparation of the electrolyte membrane, and adipate-based polymer was used as the plasticizer. As a result, it was confirmed that the most influential factors on the ECD performance were the ionic conductivity and permeability of the electrolyte membrane. In addition, it was found that the factor has a close relationship with the dissociation property of the lithium salt. Overall, the optimal ECD performance was achieved when LiTFSI salt having a large anion size among various lithium salts was dissolved in a content of about 25 wt.%.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive (소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석)

  • Lee, Sung-Jin;Hong, Soon-Kyo;Cheong, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

REMOVABLE FLEXIBLE DENTURE FOR CHILDREN WITH OLIGODONTIA : A CASE REPORT (탄성의치를 사용한 부분무치증 환아의 보철적 수복)

  • Kim, Jin-Young;Lee, Kwang-Hee;La, Ji-Young;Lee, Dong-Jin;An, So-Youn;Kim, Yun-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.150-156
    • /
    • 2009
  • Objectives : The conventional removable appliance, composed of wires and acrylic resin, had unaesthetic results and poor retention. The flexible denture, as an alternative, presents improved aesthetics with the thin and strong resin retentive area. In addition, it also enhances patients' sensory function as a result of decreased volume of denture base. The flexibility of the flexible denture reduces the possibility of fracture and distributes the masticatory forces transmitted to the abutments and residual bone tissue. This report describes a 10-year-old girl and a 6-year-old boy with oligodontia treated with the flexible dentures as an alternative to conventional removable appliances. Methods : Impression was taken using alginate material and sent to a laboratory with the bite for fabrication of the flexible denture. Prior to try-in, the flexible denture was immersed in water at $90^{\circ}C$ for one minute and cooled. Impinging area of the denture was checked by $Fit-Checker^{(R)}$ and removed and the denture was delivered to the patient. Results : Both patients were satisfied with the flexible dentures, which presented improved retention and aesthetics. Conclusion : For patients with oligodontia, flexible dentures can be considered as a treatment of choice, which may replace the conventional denture.

  • PDF

Study on the thermal expansion properties of Fe alloys for the flexible substrate of CIS thin film solar cell (CIS 박막태양전지용 철계 연성 기판재의 열팽창 특성 연구)

  • Han, Yoonho;Lim, Minsu;Song, Youngsik;Cho, Yongki;Yim, Taihong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.44.2-44.2
    • /
    • 2010
  • 차세대 태양전지로써 플렉서블 태양전지에 대한 연구가 활발하다. CIS 박막태양전지의 경우도 Glass base 태양전지 시스템 연구와 더불어 금속과 플라스틱 등 연성 기판재를 이용한 전지 시스템에 관한 연구가 진행 되고 있다. 그러나 태양전지의 핵심 부자재라고 할 수 있는 기판재에 대한 체계적인 연구는 미흡한 실정이다. 특히 플렉서블 박막태양전지용 기판재와 그 위에 적층되어 태양전지를 구성하는 박막 소재의 열팽창 거동들 사이에 차이가 있어 태양전지 시스템에 결함을 야기할 수 있다. 본 연구에서는 플렉서블 태양전지용으로 적용되거나 연구되고 있는 SUS 300 계열과 SUS 400번 계열을 중심으로 철계 연성 기판재의 열팽창 거동을 비교 분석하였다. 그리고 CIS 박막태양전지 제조 공정인 고온 박막 생성 공정의 열분석을 통해 기판재의 성능을 평가 하였다.

  • PDF

플라즈마 처리를 통한 Flexible ZnO nanowire 발전기 제작 및 효율향상 연구

  • Park, Seong-Hwak;Lee, Gyeong-Il;Lee, Cheol-Seung;Park, Ji-Seon;Kim, Seon-Min;Kim, Seong-Hyeon;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.424-424
    • /
    • 2012
  • ZnO는 수열합성법을 통해 저온에서 단결정으로 성장할 수 있기 때문에 광전소자 및 압전소자로 응용되고 있으나, 성장된 ZnO nanowire 내부 산소 결함 및 표면에 OH기의 흡착에 의해 소자특성 저하를 발생시킨다. 본 연구에서는 ZnO의 결함의 최소화를 위해 Glass 기판에 수열합성법으로 성장된 ZnO nanowire를 ICP 플라즈마 장치를 이용하여 O2 25 sccm, Base Pressure $1.5{{\times}}10^{-3}$ Torr을 기준으로 파워와 시간에 따라 표면처리 하였다. 플라즈마 처리된 ZnO nanowire의 결함특성과 형상을 XPS와 FE-SEM를 통하여 분석하였으며, ZnO nanowire의 소자특성을 평가를 위해 Kapton Film/AZO/ZnO nanowire/PMMA/Au 구조의 발전기를 제작하였다. 150 W, 10 min에서 532.4 eV의 -OH결합이 최소화됨을 확인하였으며, 이를 이용하여 Flexible ZnO nanowire 발전기 제작 했을 경우 최대 Voltage 5 V, Current 156 nA 전기적 특성을 확인하였다.

  • PDF