• Title/Summary/Keyword: Flexible AC transmission systems

Search Result 44, Processing Time 0.022 seconds

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

A UPFC Simulation using the EMTDC (EMTDC를 이용한 UPFC Simulation)

  • 송의호;전진홍;조동길;전영환;김학만
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.291-298
    • /
    • 2001
  • This paper deals with a full functional simulation of UPFC (Unified Power Flow Controller) which is a next generation FACTS (Flexible AC Transmission Systems) technology. Through analysis and modeling of he UPFC, power flow control is simulated. Active and reactive power controls, and input side bus voltage control are performed by EMTDC (Electro-Magnetic Transients in DC systems) which is a general purpose time domain simulation program for simulating power systems transients and its controls. Dynamic performances of the UPFC are verified by simulation results.

  • PDF

Setting Considerations of Distance Relay for Transmission Line with STATCOM

  • Zhang, Wen-Hao;Lee, Seung-Jae;Choi, Myeon-Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.522-529
    • /
    • 2010
  • Distance relay plays an important role in the protection of transmission lines. The application of flexible AC transmission systems (FACTS) devices, such as the static synchronous compensator (STATCOM), could affect the performance of the distance relay because of compensation effect. This paper analyzes the application of distance relay on the protection of a transmission line containing STATCOM. New setting principles for different protection zones are proposed based on this analysis. A typical 500 kV transmission system employing STATCOM is modeled using Matlab/Simulink. The impact of STATCOM on distance protection scheme is studied for different fault types, fault locations, and system configurations. Based on simulation results, the performance of distance relay is evaluated. The setting principle can be verified for the transmission line with STATCOM.

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In order to facilitate the electricity market operation and trade in the restructured environment, ample transmission capability should be provided to satisfy the demand of increasing power transactions. The conflict of this requirement and the restrictions on the transmission expansion in the restructured electricity market has motivated the development of methodologies to enhance the available transfer capability (ATC) of existing transmission grids. The insertion of flexible AC transmission System (FACTS) devices in electrical systems seems to be a promising strategy to enhance single area ATC and multi-area ATC. In this paper, the viability and technical merits of boosting single area ATC and multi-area ATC using Thyristor controlled series compensator (TCSC), static VAR compensator (SVC) and unified power flow controller (UPFC) in single device and multi-type three similar and different device combinations are analyzed. Particle swarm optimization (PSO) algorithm is employed to obtain the optimal settings of FACTS devices. The installation cost is also calculated. The study has been carried out on IEEE 30 bus and IEEE 118 bus systems for the selected bilateral, multilateral and area wise transactions.

The Enhancement of Power System Security Using flexible AC Transmission Systems (FACTS) (FACTS 기기를 이용한 전력시스템의 안전도 향상)

  • 송성환;임정욱;문승일
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.165-172
    • /
    • 2003
  • This paper presents an operation scheme to enhance the power system security by applying FACTS on Power systems. Three main generic types of FACTS devices are suggested an illustrated. Flow congestions over lines have been solved by controlling active power of series-compensated FACTS devices and low voltages at buses have been solved by controlling reactive power of shunt-compensated FACTS devices. Especially, Especially, UPFC has been applied in both line congestion and low voltages. Two kinds of indices which indicate the power system security level related to line flow and bus voltage are utilized in this paper. They have been minimized to enhance the power system security level through the iterative method and the sensitivity vector of security index is derived to determine the direction to minimum. The proposed algorithm has been tested on the IEEE 57-bus system with FACTS devices in a normal condition and a line-faulted contingency.

Analysis of the Distribution STATCOM Operating Results for Improving Distribution System Power Quality (전력품질 향상을 위한 배전용 STATCOM 운전결과 분석)

  • 오관일;전영수;박상태;추진부
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.377-385
    • /
    • 2000
  • This paper presents the test and operation results of the domestic demonstration of the reactive power compensation device called STATCOM (STATic COMpensator). The object of the paper is to describe the reliability of the unit based on the extensive operation databases. The custom power is similar in nature to the concept of FACTS(Flexibel AC Transmission System). By controlling reactive power, the technology offers utilities the opportunity for increased efficiency and their capabilities will permit transmission planners make the best use of their existing transmission resources. STATCOM is a custom power device in a way and can be used in a similar way for the dynamic compensation of power transmission systems, providing reactive power compensation, voltage regulation and mitigation of voltage flicker. It is shown that the STATCOM has clear advantages in areas such as; providing reactive power compensation and improving power factor.

  • PDF

Multivariable Optimal Control of a Direct AC/AC Converter under Rotating dq Frames

  • Wan, Yun;Liu, Steven;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.419-428
    • /
    • 2013
  • The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter's independent currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation results.

The Comparision of Four Transmission methods to enhance Transmission Capability (전력수송능력향상을 위한 4가지 송전방식의 비교)

  • Lee, Geun-Joon;Chang, Byung-Hoon;Kim, Yeng-Han;Bak, Yeng-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.646-651
    • /
    • 1996
  • This paper presents the study results of four transmission methods to enchance transmission capability. The four transmission methods studied were FACTS, HVDC, High Phase Order and new conductor material method. The study was Performed based on mid and long term KEPCO system in 2000 and 2006 year. Among them FACTS(Flexible AC Transmission System) is an exciting new field which holds great promise for improved utilization of AC transmission systems.

  • PDF

Modelling and Performance Analysis of UPFC Using EMTP/ATPDraw (EMTP/ATPDraw를 이용한 UPFC구현 및 동작 분석)

  • Jang, Won-Hyeok;Lee, You-Jin;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.217-219
    • /
    • 2008
  • Among the Flexible AC Transmission Systems (FACTS) devices, Unified Power Flow Controller (UPFC) is considered as the most powerful and versatile one as it provides simultaneous, real time control of the transmission parameters, voltages, impedances, and phase angles which determine the power flow in AC transmission systems. This paper presents modelling of UPFC and describes its characteristics. The UPFC implemented in this paper is based on Sinusoidal Pulse Width Modulation (SPWM) and Electro-Magnetic Transients Program (EMTP)/ATPDraw is used to model and analyze it. The simulation results confirm advantages of UPFC in operational performance with respect to the steady state Power flow regulation and the transient stability control.

  • PDF

Development of RTDS model for Sea-Deagu SVC (실시간 디지털 시뮬레이터를 위한 서대구 SVC 모델 개발)

  • Kim, Y.K.;Lee, J.;Yoon, Y.B.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.280-282
    • /
    • 2002
  • This paper presents the characteristics and Real Time Digital Simulator(RTDS) model for Seo-deagu Static Var Compensator(SVC) systems installed in 1999. SVC system is a power system controller using power electronics called Flexible AC Transmission Systems (FACTS). RTDS model for Seo-deagu SVC is developed and verified, we recognize to be essential for SVC systems and understand SVC systems through simulation.

  • PDF