• Title/Summary/Keyword: Fleet management

Search Result 125, Processing Time 0.032 seconds

EVALUATING MANAGEMENT STRATEGIES THROUGH ECONOMIC MODELING OF HEAVY EQUIPMENT FLEETS

  • Tyler Johnson;John Hildreth;Scott Capps
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.219-225
    • /
    • 2013
  • State transportation agencies utilize fleets of heavy equipment to construct and maintain roadways. Equipment cost models can be developed to forecast economic life, which is the point at which the average unit cost to date reaches a minimum. A calculated economic life and cost models can be used to quantify the impacts of management strategies applied to a fleet. The purpose of this research was to develop an accurate method of quantifying the results of management strategies applied to a fleet of heavy construction equipment. The strategies evaluated are related to the annual usage of the fleet and the size of the fleet. More specifically the methodology is used to adjust the economic model to consider a limit to the annual decline in machine usage and a reduction in the number of machines in the fleet. When limiting annual machine usage, a specified rate is applied to the usage of the fleet, while total usage is held constant. This causes aging at a modified rate. A reduction in fleet size also causes a change to the usage of a fleet as the fleet must use fewer machines to produce the same total usage.

  • PDF

A Study on the Relationship between National Controlling Fleets and the Managerial Performance of Ship Management Companies in Korea

  • Sang Bae Lee;Chi Yeol Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.104-108
    • /
    • 2024
  • This study investigates the relationship between national controlling fleets and the managerial performance of ship management companies in Korea. As industries clearly show interrelations between upstream and downstream entities , it is likely that the managerial performance of ship management companies in Korea is affected by the size of national fleet. Therefore, the present study analyzes the impact of Korean fleet size on the growth and the profitability of ship management firms. To this end, the performances of 10 major ship management companies in the period from 2012-2022 are examined through panel data regressions. The results indicate that the size of the national fleet has a positive impact on growth in both the assets and the sales of ship management companies. Specifically, the size of the Korean-flagged fleet is the most crucial factor, while that of the foreign-flagged fleet has no significant effect. In stark contrast to the findings regarding growth, the size of national fleet is found to have no significant impact on the profitability of ship management companies. This study's findings are expected to provide valuable implications informing both the managerial decision-making of ship management companies as well as policy-making for shipping and its related industries.

Integrated Fleet Management Support System for Industrial Carrier (인더스트리얼 캐리어를 위한 통합 선대관리 지원시스템)

  • 김시화;허강이
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.63-76
    • /
    • 1999
  • This paper aims at developing an integrated fleet management support system for industrial carriers who usually control the vessels of their own or on a time charter to minimize the cost of shipping their cargoes. The work is mainly concerned with the operational management problem of the fleet owned by a major oil company, a typical industrial carrier. The optimal fleet management problem for the major oil company can be divided into two phase problem. The front end corresponds to the production operation problem of the transportation of crude oil, the refinery operation, and the distribution of product oil to comply with the demand of the market. The back end is to tackle the fleet scheduling problem to meet the seaborne transportation demand derived from the front end. Relevant optimization models for each phase are proposed and described briefly. Then a user-friendly integrated fleet management support system is built based on the proposed optimization models for both ends under Windows environment. A case study reflecting the practices of fleet management problem for the major oil company is carried out by using the system.

  • PDF

Implementation of MAPF-based Fleet Management System (다중에이전트 경로탐색(MAPF) 기반의 실내배송로봇 군집제어 구현)

  • Shin, Dongcheol;Moon, Hyeongil;Kang, Sungkyu;Lee, Seungwon;Yang, Hyunseok;Park, Chanwook;Nam, Moonsik;Jung, Kilsu;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.407-416
    • /
    • 2022
  • Multiple AMRs have been proved to be effective in improving warehouse productivity by eliminating workers' wasteful walking time. Although Multi-agent Path Finding (MAPF)-based solution is an optimal approach for this task, its deployment in practice is challenging mainly due to its imperfect plan-execution capabilities and insufficient computing resources for high-density environments. In this paper, we present a MAPF-based fleet management system architecture that robustly manages multiple robots by re-computing their paths whenever it is necessary. To achieve this, we defined four events that trigger our MAPF solver framework to generate new paths. These paths are then delivered to each AMR through ROS2 message topic. We also optimized a graph structure that effectively captures spatial information of the warehouse. By using this graph structure we can reduce computational burden while keeping its rescheduling functionality. With proposed MAPF-based fleet management system, we can control AMRs without collision or deadlock. We applied our fleet management system to the real logistics warehouse with 10 AMRs and observed that it works without a problem. We also present the usage statistic of adopting AMRs with proposed fleet management system to the warehouse. We show that it is useful over 25% of daily working time.

Optimal Resource Allocation for Fleet Availability Management in Closed Queueing Network

  • Park Kyung S.;Ahn Byung-ha
    • Journal of the military operations research society of Korea
    • /
    • v.6 no.2
    • /
    • pp.47-67
    • /
    • 1980
  • Interactions of major activities participating in fleet operations are investigated in the framework of a closed queueing network system with finite aircrafts assigned to it. An implementable algorithm is developed, which is useful for computing the distributions needed to evaluate the effects of the interactions on the fleet operations. The availability management program is focused on seeking an optimal resource allocation to multiple repair-shops to maximize the fleet availability subject to the budget constraint.

  • PDF

A Vehicle Fleet Planning System with Multi-objective Optimization (다목적 최적화를 고려한 배차계획 시스템)

  • 양병희;이영애
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.3
    • /
    • pp.63-79
    • /
    • 1994
  • Many vehicle fleet planning systems have been suggested to minimize the routing distances of vehicles or reduce the transportation cost. But the more considerations the method takes, the higher complexites are involved in a large number of practical situations. The purpose of this paper is to vehicle fleet planning system. This paper is considered multi-objective optimization. The vehicle fleet planning system developed by this study involves such complicated and restricted conditions as one depot, multiple nodes (demand points), multiple vehicle types, multipel order items, and other many restrictions for operating vehicles. The proposed algorithm is compared with the nearest neighbor heuristic (NNH) and the savings heuristic (SAH) algorithm in terms of total logistics cost and driving time. This method constructs a route with a minimum number of vehicles for a given demand. This method can be used to any companys which vehicle fleet planning system under circumstances considered in this paper.

  • PDF

The auto regression model of bus fleet failure number

  • Zhou, Y.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • This paper uses the auto regression model to modeling failure number of a bus fleet. The fitted model can be used to predict the failure number in the future. A numerical example is presented to illustrate the modeling process and the appropriateness of the fitted model. At last, some possible applications of the model are discussed.

  • PDF

On Fleet Sizing and Distribution Policy of Transportation Equipments in Pure Hub-and-Spoke Networks : The Case of Compound Poisson Process (순 방사형 물류체계에서 수송장비의 보유대수 결정과 분배정책 : 복합포아송과정을 따를 경우)

  • 서순근;이병호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.109-123
    • /
    • 1999
  • Fleet sizing and empty equipment redistribution are two of the most critical problems in managing a fleet of equipment over a transportation network. Where the demand pattern followed the compound Poisson process(CPP) which can be generated one or more at a time under homogeneous Poisson process(HPP), this paper presented a mathematical model to determine control parameters of a decentralized distribution policy and fleet size in case of the pure hub-and-spoke system, a popular form of a logistics system. and validated this model by simulation. That is, where the number of demanded equipments followed geometric and binomial distributions, respectively, cost models on the pure hub-and-spoke logistics system with deterministic trans-portation times, which could be solved analytically, were established and analyzed. We also compared the deterministic case with stochastic one that the transportation time follows some probability distributions.

  • PDF

Operational Optimization Analysis of Industrial Operators' Fleet (화주 직접운항 선대의 운영 최적화 분석)

  • 김시화;이경근
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.33-51
    • /
    • 1998
  • The industrial operation is one of the three basic modes of shipping operation with liner and Tramp operations. Industrial operators usually control vessels of their own or on a time charter to minimize the cost of shipping their cargoes. Such operations abound in shipping of bulk commodities, such as oil, chemicals and ores. This work is concerned with an operational optimization analysis of the fleet owned by a major oil company. a typical industrial operator. The operational optimization problem of the fleet of a major oil company is divided Into two phase problem. The front end corresponds to the optimization problem of the transportation of crude oil. product mix. and the distribution of product oil to comply with the demand of the market. The back end tackles the scheduling optimization problem of the fleet to meet the seaborne transportation demand derived from the front end. A case study reflecting the practices of an international major oil company is demonstrated to make clear the underlying ideas.

  • PDF