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Abstract. This paper uses the auto regression model to modeling failure number of a 
bus fleet. The fitted model can be used to predict the failure number in the future. A 
numerical example is presented to illustrate the modeling process and the 
appropriateness of the fitted model. At last, some possible applications of the model 
are discussed. 
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1. INTRODUCTION 
 
Fleet management involves operation and maintenance scheduling, spare parts and 

inventory management, retirement decision-making and many other issues. Scientific and 
effective management are benefit for improving vehicle utilization and reducing operating 
cost. 

The fleet operators typically use fleet management system to record information 
about fleet reliability, economy and so on. In fact, the scientific analysis of this 
information can provide decision support for fleet management, which will be illustrated 
in this paper.  

For a specific vehicle, fleet management system records failure number periodically 
(e.g., weekly or monthly). So we could get a sample of the random failure point process, 
which can be denoted as{ }1( , ), 1, 2, 3, ...i i in t t i

−
= . Here, 0 0t =  is the beginning time of the 

vehicle to operate, it  denote the observation time, and in denote the failure number of the 

interval ( )1,i it t− . If tΔ ( 1i it t t
−

Δ = − ) is a constant, and which can be taken as a unit of time. 

Obviously, in  is the empirical failure rate (Coetzee, 1997) (or failure intensity), which is 
defined as the expected number failure per unit time. 

Let ( )N t  denote the cumulative failure number at (0, t ). The expectancy of ( )N t , 
[ ]( )E N t , fitted by the following power-law model (Coetzee, 1997) :  
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The intensity function is given by  
-1

( )
bb tt

a a
τλ +⎛ ⎞= ⎜ ⎟

⎝ ⎠
.                                                       (1.2) 

Here, τ , a and b are model parameters. They can be understood it as the initial age, time 
between failure and the failure trend respectively. If 1b > , the item degrades with time; if 

1b = , the failure arrivals follow a homogeneous Poisson process, whose underlying failure 
times are exponentially distributed; and if 1b < , the item improves with time. As an 
ageing system, the bus performance degrades with the increasing time. Hence, it appears 
necessary to implement preventive maintenance at an appropriate time. Maintenance 
optimization model (Jiang and Murthy, 2008) is used to determine the appropriate time 
based on a stochastic failure point process model. Failure point process model also can be 
used to predict failure number in the future. Literature (Jiang et al., 2010; Jiang and Zhou, 
2010) used the power-law model to fit the failure number of a bus fleet, further to evaluate 
bus health and determine the overhaul time. Fleet management system records the failure 
data periodically, which forms a time-series data. Using time-series model (e.g. auto-
regression model, AR for short) to modeling the data seems natural. In the literature, many 
scholars have used the time series model into reliability modeling and analysis (Huang et. al., 
2010; Fengchun et. al., 2011; Zhongmin and Yeqing, 2010; Roe and Mba, 2009; Christian, 
2008). To best of our knowledge, the AR model is scarcely used to modeling and analysis 
the failure number of a bus fleet. So, we try to use the AR model to model the failure 
number of a bus fleet. More important, the appropriateness of the two models will be 
distinguished. 

The paper is organized as follows. Section 2 introduces the AR model. Section 3 uses 
the AR model to modeling the failure number of a bus fleet, and compare with the result 
of the power-law model. A discussion of the model applications and a brief summary will 
be given in Section 4. 

 
 

2. BASIC OF THE AR MODEL 
 

2.1 Time-series of failure number 
 
Assuming a bus fleet consists of m buses (with the same model), which began 

operating in the same route. The fleet management system records all kinds of operational 
information, such as mileage, fuel consumption, failure occurrence time, corrective 
actions, and so on. We use a vector ( )( ) ( ), 1, 2, ...,jz t j k=  to denote them. When we only 

focus on one of them, it can simply be denoted as ( )z t .When the time of data collection is 

it i t= Δ ( tΔ  is constant), let 1tΔ = ( tΔ is a time unit), so it i= . Therefore, the time-series 
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data { }( ), 1, 2, ...iz t i =  can be denoted as { }, 1, 2, ...iz i = .In this paper, the time unit is week. 

iz  denotes the cumulative failure number at (0, it ), so ( )i iz N t= . 
 

2.2 AR model  
 
Assuming we have had a time-series data{ }1 2, , ..., nz z z . With regard to the AR model, 

the predictive value of the next time is the liner combination of the few former true values. 
It is given by Hamilton (1994). 

1
, 1, 2,...

q

k j k q j k
j

z z k q qβ β ε− − +
=

= + + = + +∑0 1 .                                     (2.1) 

Here, model order q  is a known positive integer. 0β  and jβ  are auto regression 

coefficients, which is independent from n. kε  is a normal random variable, zero mean, 

variance is 2σ . Equation (2.1) can be denoted by ( )AR q . 
In order to determine the auto regression coefficients, let 1, 2, ...,k q q n= + +  

successively, so we can obtain the linear regression equation about{ }, 0j j qβ ≤ ≤ : 

1
1

1
1
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.                                                 (2.2) 

Form Equation (2.2), { }, 0j j qβ ≤ ≤  can be obtained through the regression analysis 

(Microsoft Excel has the regression analysis module), and denoted as{ }1 20 , , ...,, qb b b b . The 

accuracy of model can be measured by{ }, 1, 2, ...,k k q q nε = + + : 

1
, 1, 2,...,

q

k j k q j k
j

b b z z k q q nε − + −
=

= + − = + +∑0 1 .                                      (2.3) 

According to Equation (2.3), 2σ  can be estimated by 
2 1

k

n

k qn q
σ ε

= +
=

−
∑ 2

1
.                                                          (2.4) 

The smaller σ  means the more accuracy. 
 

2.3 The determine of q  
 
Generally speaking, with the increase of q, σ  will be smaller, but the model is more 

complex. Therefore, determining the appropriate q is the key of the modeling processes. In 
this paper, we determine q based on P value of the regression analysis. A smaller P value 
means the linear relation between variables more significant. The threshold of P value is 
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usually given as 0.05. According to AR(q), the number of P value is q+1, and let mp  
denote the biggest P value. With the increase of q, more variables will be introduced, and 
lead to 0.05mp > . Until 0q  can satisfy the following relation: 

( ) 0 00.05, ; ( 1) 0.05m mp q q q p q< ≤ + > .                                                (2.5) 
So the 0q is the true value which we are looking for. 
 

2.4 Prediction 
 
Once the model parameters were identified, the next predictive value is: 

q

n j n q j
j

z b b z+ − +
=

= + ∑
0

01 0
1

.                                                    (2.6) 

When we predict the values of 2, 3, ...t n n= + + , the predictive values of 1, 2, ...t n n= + +  
can be taken as observed value. When there are more observational data, the model can be 
updated to make better prediction accuracy. 
 
 

3. AR MODEL OF BUS FLEET FAILURE NUMBER 
 
3.1 Background and data  
 

A certain fleet of 22 buses (with the same model) began operating in one of the 
routes on August 24th, 2005. Upon an operational failure, the bus is restored by a 
corrective repair, which can be deemed a minimal repair though certain opportunistic 
maintenance actions may be combined. We have collected the buses operational data 
(failure number per week and maintenance cost of each bus and fuel consumption of the 
whole fleet) in duration of 175 weeks (September 1st, 2006, when the management system 
began operating, to December 31st, 2009). In this paper, we focus on the analysis of failure 
number. iz  denote the failure number at interval ( )0, i , in  denote the failure number at 
interval ( )1,i i− : 

1i i in z z −= − .                                                                (3.1) 
The failure observations are displayed in Table 3.1. 

In order to test the accuracy of the fitted AR model, we use the previous 160 data to 
modeling the AR model, and predict the following 15 week’s failure number, then 
compared with the actual observations. The comparison model is the power-law model. 

 
3.2 Modeling process 
 

According to the abovementioned method, we can estimate the model parameters 
using the regression module in Microsoft Excel. Let q=1, 2 and 3, the model parameters 
and P values are given in Table 3.2. According to Table 3.2, we have 0 2q = . We also fit 
the data using the power-law model. The model parameters are given in the last row of 
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Table 3.2. The fitting results of the two models are shown in Figure 3.1. The figure shows 
that the power-law model describes the average failure behavior of the failure process, and 
the AR model reflects the dynamic behavior of the failure process. 
 

Table 3.1. Failure number of the bus fleet 
i  iz  i  iz  i  iz  i  iz i  iz i  iz i  iz i  iz  i  iz  

1 4 21 182 41 384 61 672 81 984 101 1373 121 1822 141 2284 161 2884 

2 14 22 193 42 400 62 680 82 1001 102 1393 122 1846 142 2316 162 2916 

3 22 23 205 43 414 63 685 83 1011 103 1420 123 1882 143 2336 163 2946 

4 29 24 218 44 430 64 695 84 1020 104 1441 124 1904 144 2365 164 2976 

5 43 25 225 45 441 65 712 85 1030 105 1463 125 1923 145 2404 165 3007 

6 52 26 232 46 457 66 737 86 1050 106 1479 126 1937 146 2445 166 3031 

7 57 27 239 47 475 67 754 87 1070 107 1504 127 1955 147 2490 167 3055 

8 67 28 245 48 492 68 763 88 1088 108 1522 128 1976 148 2511 168 3090 

9 77 29 253 49 515 69 780 89 1112 109 1547 129 2000 149 2538 169 3122 

10 85 30 265 50 530 70 800 90 1143 110 1563 130 2029 150 2561 170 3144 

11 93 31 276 51 549 71 815 91 1158 111 1580 131 2051 151 2606 171 3170 

12 102 32 287 52 558 72 832 92 1178 112 1590 132 2080 152 2650 172 3204 

13 106 33 295 53 572 73 848 93 1202 113 1619 133 2101 153 2683 173 3231 

14 110 34 308 54 581 74 865 94 1219 114 1645 134 2125 154 2721 174 3258 

15 120 35 322 55 595 75 882 95 1250 115 1676 135 2145 155 2735 175 3293 

16 126 36 330 56 615 76 895 96 1269 116 1697 136 2163 156 2760   

17 136 37 342 57 625 77 910 97 1291 117 1718 137 2194 157 2785   

18 145 38 350 58 634 78 934 98 1319 118 1749 138 2217 158 2817   

19 153 39 360 59 648 79 950 99 1334 119 1773 139 2239 159 2835   

20 170 40 367 60 663 80 969 100 1354 120 1799 140 2259 160 2859   

 

Table 3.2. Estimated ( )RA q  model parameters and m
p values 

q  b0  or a  1b or b  2b  or τ  3b  σ  pm 

1 9.0693 1.0079   5.5443 0.0000 

2 7.1080 -0.2196 1.2258  5.4295 0.0065 
3 6.6896 -0.0635 -0.1446 1.2137 5.4354 0.4470 

Model(1) 2.1414 1.8006 17.3879  17.4381  

 

3.3 Comparison of prediction results 
 
Now, we apply the two fitted model to predict the failure number of 161-175 weeks. 

The predictive value, observed values and their relative errors are displayed in Figure 3.1 
and Figure 3.2. According to Figure 3.1 and Figure 3.2, we found that: When prediction 
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interval is less than 5, the AR model prediction errors are less than the power-law model. 
And when the prediction interval is greater than 5, the power-law model prediction is 
more accuracy. In other words, the AR model is applicable to short-term prediction (for 
example, less than one month); and the power-law model is applicable to long-term 
prediction. 

      
Figure 3.1. The fitting results based on the data of 160 weeks ago 

 
 
 

 
Figure 3.2. The relative errors of the fitted models 

 
3.4 Model update 
 

If we update the model every few weeks, we can obtain more accuracy results. 
Where the longer cycle is, the greater relative errors are. The Table 3.3 proofs it. Thus, 
according to the allowed error, we can determine an appropriate update cycle. 
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Table 3.3. The fitted model parameters based on the data of 165 and 170 weeks ago 
n b0 b1 b2 Pm 

160 7.1080 -0.2196 1.2258 0.0065 
165 7.1392 -0.2260 1.2320 0.0041 
170 7.3234 -0.2323 1.2379 0.0030 
175 7.3717 -0.2371 1.2425 0.0019 

Relative error,%, n=165 0.4389 2.9144 0.5058  
Relative error,%, n=170 2.5801 2.7876 0.4789  
Relative error,%, n=175 0.6595 2.0663 0.3716  

 
 

4. APPLICATION AND CONCLUSIONS 
 

In the above mentioned numerical example, the AR model is applicable to short-term 
prediction. The prediction of the failure number also has the following applications: 

 (1) Planning and scheduling the operation and production; 
 (2) Preparation of maintenance, such as pre-order spare parts; 
 (3) Capital budget; 
 (4) Determine the occasion of preventive maintenance, and so on. 

For example, supposing the average maintenance cost is 300 RMB, and the downtime is 1 
hour. In the following 4 weeks after the 175-th weeks, there will be 101 failures. In that 
case, the maintenance cost and downtime will be 30300 RMB, and 101 hours respectively. 
About the application of maintenance decision-making, the reader may refer to Jiang et 
al., (2010) and Jiang and Zhou (2010). 
In short, we have used the AR model to modeling the failure number of a certain bus fleet, 
and compared with the power-law model. The main findings are: 

 (1) The power-law model describes the average failure behavior of the failure process, 
and the AR model reflects the dynamic behavior of the failure process; 

(2) The AR model is applicable to short-term prediction; and the power-law model is 
applicable to long-term prediction; 

 (3) According to the allowable error level, we can determine the model update cycle. 
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