International Journal of Reliability and Applications Vol. 12, No. 2, pp. 95-102, 2011

The auto regression model of bus fleet failure number

Y. Zhou*

School of Management and Economics of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

Abstract. This paper uses the auto regression model to modeling failure number of a bus fleet. The fitted model can be used to predict the failure number in the future. A numerical example is presented to illustrate the modeling process and the appropriateness of the fitted model. At last, some possible applications of the model are discussed.

Key Words: Vehicle fleet management, auto regression model, failure number

1. INTRODUCTION

Fleet management involves operation and maintenance scheduling, spare parts and inventory management, retirement decision-making and many other issues. Scientific and effective management are benefit for improving vehicle utilization and reducing operating cost.

The fleet operators typically use fleet management system to record information about fleet reliability, economy and so on. In fact, the scientific analysis of this information can provide decision support for fleet management, which will be illustrated in this paper.

For a specific vehicle, fleet management system records failure number periodically (e.g., weekly or monthly). So we could get a sample of the random failure point process, which can be denoted as $\{n_i(t_{i-1}, t_i), i = 1, 2, 3, ...\}$. Here, $t_0 = 0$ is the beginning time of the vehicle to operate, t_i denote the observation time, and n_i denote the failure number of the interval (t_{i-1}, t_i) . If Δt ($\Delta t = t_i - t_{i-1}$) is a constant, and which can be taken as a unit of time. Obviously, n_i is the empirical failure rate (Coetzee, 1997) (or failure intensity), which is defined as the expected number failure per unit time.

Let N(t) denote the cumulative failure number at (0, t). The expectancy of N(t), E[N(t)], fitted by the following power-law model (Coetzee, 1997) :

^{*} Corresponding Author.

E-mail address: zhouwentao951@163.com

The auto regression model of bus fleet failure number

$$E[N(t)] = \left(\frac{t+\tau}{a}\right)^{b}.$$
(1.1)

The intensity function is given by

$$\lambda(t) = \frac{b}{a} \left(\frac{t+\tau}{a}\right)^{b-1}.$$
(1.2)

Here, τ , a and b are model parameters. They can be understood it as the initial age, time between failure and the failure trend respectively. If b > 1, the item degrades with time; if b = 1, the failure arrivals follow a homogeneous Poisson process, whose underlying failure times are exponentially distributed; and if b < 1, the item improves with time. As an ageing system, the bus performance degrades with the increasing time. Hence, it appears necessary to implement preventive maintenance at an appropriate time. Maintenance optimization model (Jiang and Murthy, 2008) is used to determine the appropriate time based on a stochastic failure point process model. Failure point process model also can be used to predict failure number in the future. Literature (Jiang et al., 2010; Jiang and Zhou, 2010) used the power-law model to fit the failure number of a bus fleet, further to evaluate bus health and determine the overhaul time. Fleet management system records the failure data periodically, which forms a time-series data. Using time-series model (e.g. autoregression model, AR for short) to modeling the data seems natural. In the literature, many scholars have used the time series model into reliability modeling and analysis (Huang et. al., 2010; Fengchun et. al., 2011; Zhongmin and Yeqing, 2010; Roe and Mba, 2009; Christian, 2008). To best of our knowledge, the AR model is scarcely used to modeling and analysis the failure number of a bus fleet. So, we try to use the AR model to model the failure number of a bus fleet. More important, the appropriateness of the two models will be distinguished.

The paper is organized as follows. Section 2 introduces the AR model. Section 3 uses the AR model to modeling the failure number of a bus fleet, and compare with the result of the power-law model. A discussion of the model applications and a brief summary will be given in Section 4.

2. BASIC OF THE AR MODEL

2.1 Time-series of failure number

Assuming a bus fleet consists of *m* buses (with the same model), which began operating in the same route. The fleet management system records all kinds of operational information, such as mileage, fuel consumption, failure occurrence time, corrective actions, and so on. We use a vector $(z^{(j)}(t), j = 1, 2, ..., k)$ to denote them. When we only focus on one of them, it can simply be denoted as z(t). When the time of data collection is $t_i = i\Delta t$ (Δt is constant), let $\Delta t = 1$ (Δt is a time unit), so $t_i = i$. Therefore, the time-series

data $\{z(t_i), i = 1, 2, ...\}$ can be denoted as $\{z_i, i = 1, 2, ...\}$. In this paper, the time unit is week. z_i denotes the cumulative failure number at $(0, t_i)$, so $z_i = N(t_i)$.

2.2 AR model

Assuming we have had a time-series data $\{z_1, z_2, ..., z_n\}$. With regard to the AR model, the predictive value of the next time is the liner combination of the few former true values. It is given by Hamilton (1994).

$$z_{k} = \beta_{0} + \sum_{j=1}^{q} \beta_{j} z_{k-q-1+j} + \varepsilon_{k}, k = q+1, q+2, \dots$$
(2.1)

Here, model order q is a known positive integer. β_0 and β_j are auto regression coefficients, which is independent from n. ε_k is a normal random variable, zero mean, variance is σ^2 . Equation (2.1) can be denoted by AR(q).

In order to determine the auto regression coefficients, let k = q + 1, q + 2, ..., n successively, so we can obtain the linear regression equation about $\{\beta_j, 0 \le j \le q\}$:

$$z_{q+1} = \beta_{0} + \sum_{j=1}^{q} \beta_{j} z_{j} + \varepsilon_{q+1}$$

$$z_{q+2} = \beta_{0} + \sum_{j=1}^{q} \beta_{j} z_{j+1} + \varepsilon_{q+2} .$$

$$.....$$

$$z_{n} = \beta_{0} + \sum_{j=1}^{q} \beta_{j} z_{n-q+j-1} + \varepsilon_{n}$$
(2.2)

Form Equation (2.2), $\{\beta_j, 0 \le j \le q\}$ can be obtained through the regression analysis (Microsoft Excel has the regression analysis module), and denoted as $\{b_0, b_1, b_2, ..., b_q\}$. The accuracy of model can be measured by $\{\varepsilon_k, k = q + 1, q + 2, ..., n\}$:

$$\varepsilon_{k} = b_{0} + \sum_{j=1}^{q} b_{j} z_{k-q+j-1} - z_{k}, k = q+1, q+2, \dots, n.$$
(2.3)

According to Equation (2.3), σ^2 can be estimated by

$$\sigma^{2} = \frac{1}{n-q} \sum_{k=q+1}^{n} \varepsilon_{k}^{2} .$$
 (2.4)

The smaller σ means the more accuracy.

2.3 The determine of *q*

Generally speaking, with the increase of q, σ will be smaller, but the model is more complex. Therefore, determining the appropriate q is the key of the modeling processes. In this paper, we determine q based on P value of the regression analysis. A smaller P value means the linear relation between variables more significant. The threshold of P value is

usually given as 0.05. According to AR(q), the number of P value is q+1, and let p_m denote the biggest P value. With the increase of q, more variables will be introduced, and lead to $p_m > 0.05$. Until q_0 can satisfy the following relation:

$$p_m(q) < 0.05, q \le q_0; p_m(q_0 + 1) > 0.05$$
. (2.5)

So the q_0 is the true value which we are looking for.

2.4 Prediction

Once the model parameters were identified, the next predictive value is:

$$z_{n+1} = b_0 + \sum_{j=1}^{q_0} b_j z_{n-q_0+j} \,. \tag{2.6}$$

When we predict the values of t = n + 2, n + 3, ..., the predictive values of t = n + 1, n + 2, ... can be taken as observed value. When there are more observational data, the model can be updated to make better prediction accuracy.

3. AR MODEL OF BUS FLEET FAILURE NUMBER

3.1 Background and data

A certain fleet of 22 buses (with the same model) began operating in one of the routes on August 24th, 2005. Upon an operational failure, the bus is restored by a corrective repair, which can be deemed a minimal repair though certain opportunistic maintenance actions may be combined. We have collected the buses operational data (failure number per week and maintenance cost of each bus and fuel consumption of the whole fleet) in duration of 175 weeks (September 1st, 2006, when the management system began operating, to December 31st, 2009). In this paper, we focus on the analysis of failure number. z_i denote the failure number at interval (0,i), n_i denote the failure number at interval (i-1,i):

$$n_i = z_i - z_{i-1} \,. \tag{3.1}$$

The failure observations are displayed in Table 3.1.

In order to test the accuracy of the fitted AR model, we use the previous 160 data to modeling the AR model, and predict the following 15 week's failure number, then compared with the actual observations. The comparison model is the power-law model.

3.2 Modeling process

According to the abovementioned method, we can estimate the model parameters using the regression module in Microsoft Excel. Let q=1, 2 and 3, the model parameters and P values are given in Table 3.2. According to Table 3.2, we have $q_0 = 2$. We also fit the data using the power-law model. The model parameters are given in the last row of

Y. Zhou

Table 3.2. The fitting results of the two models are shown in Figure 3.1. The figure shows that the power-law model describes the average failure behavior of the failure process, and the AR model reflects the dynamic behavior of the failure process.

i	Z_i	i	Z_i	i	Z_i	i	Z_i	i		i	Zi	i	Zi	i	Z_i	i	Z_i
		-	•					-					-		•	-	
1	4	21	182	41	384	61	672	81	984	101	1373	121	1822	141	2284	161	2884
2	14	22	193	42	400	62	680	82	1001	102	1393	122	1846	142	2316	162	2916
3	22	23	205	43	414	63	685	83	1011	103	1420	123	1882	143	2336	163	2946
4	29	24	218	44	430	64	695	84	1020	104	1441	124	1904	144	2365	164	2976
5	43	25	225	45	441	65	712	85	1030	105	1463	125	1923	145	2404	165	3007
6	52	26	232	46	457	66	737	86	1050	106	1479	126	1937	146	2445	166	3031
7	57	27	239	47	475	67	754	87	1070	107	1504	127	1955	147	2490	167	3055
8	67	28	245	48	492	68	763	88	1088	108	1522	128	1976	148	2511	168	3090
9	77	29	253	49	515	69	780	89	1112	109	1547	129	2000	149	2538	169	3122
10	85	30	265	50	530	70	800	90	1143	110	1563	130	2029	150	2561	170	3144
11	93	31	276	51	549	71	815	91	1158	111	1580	131	2051	151	2606	171	3170
12	102	32	287	52	558	72	832	92	1178	112	1590	132	2080	152	2650	172	3204
13	106	33	295	53	572	73	848	93	1202	113	1619	133	2101	153	2683	173	3231
14	110	34	308	54	581	74	865	94	1219	114	1645	134	2125	154	2721	174	3258
15	120	35	322	55	595	75	882	95	1250	115	1676	135	2145	155	2735	175	3293
16	126	36	330	56	615	76	895	96	1269	116	1697	136	2163	156	2760		
17	136	37	342	57	625	77	910	97	1291	117	1718	137	2194	157	2785		
18	145	38	350	58	634	78	934	98	1319	118	1749	138	2217	158	2817		
19	153	39	360	59	648	79	950	99	1334	119	1773	139	2239	159	2835		
20	170	40	367	60	663	80	969	100	1354	120	1799	140	2259	160	2859		

 Table 3.1. Failure number of the bus fleet

			Ĩ			
q	b_0 or a	b_1 or b	$b_{_2}$ or $ au$	b_{3}	σ	p _m
1	9.0693	1.0079			5.5443	0.0000
2	7.1080	-0.2196	1.2258		5.4295	0.0065
3	6.6896	-0.0635	-0.1446	1.2137	5.4354	0.4470
Model(1)	2.1414	1.8006	17.3879		17.4381	

Table 3.2. Estimated AR(q) model parameters and P_m values

3.3 Comparison of prediction results

Now, we apply the two fitted model to predict the failure number of 161-175 weeks. The predictive value, observed values and their relative errors are displayed in Figure 3.1 and Figure 3.2. According to Figure 3.1 and Figure 3.2, we found that: When prediction

interval is less than 5, the AR model prediction errors are less than the power-law model. And when the prediction interval is greater than 5, the power-law model prediction is more accuracy. In other words, the AR model is applicable to short-term prediction (for example, less than one month); and the power-law model is applicable to long-term prediction.

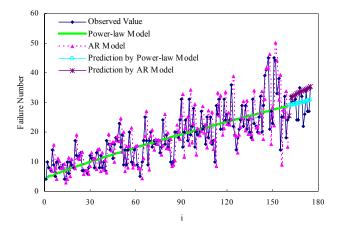


Figure 3.1. The fitting results based on the data of 160 weeks ago

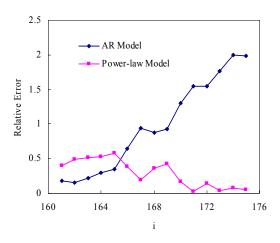


Figure 3.2. The relative errors of the fitted models

3.4 Model update

If we update the model every few weeks, we can obtain more accuracy results. Where the longer cycle is, the greater relative errors are. The Table 3.3 proofs it. Thus, according to the allowed error, we can determine an appropriate update cycle.

	and the cubed	on the data of	100 unu 170	meens ago
n	b ₀	b ₁	b ₂	P _m
160	7.1080	-0.2196	1.2258	0.0065
165	7.1392	-0.2260	1.2320	0.0041
170	7.3234	-0.2323	1.2379	0.0030
175	7.3717	-0.2371	1.2425	0.0019
Relative error,%, n=165	0.4389	2.9144	0.5058	
Relative error,%, n=170	2.5801	2.7876	0.4789	
Relative error,%, n=175	0.6595	2.0663	0.3716	

Table 3.3. The fitted model parameters based on the data of 165 and 170 weeks ago

4. APPLICATION AND CONCLUSIONS

In the above mentioned numerical example, the AR model is applicable to short-term prediction. The prediction of the failure number also has the following applications:

- (1) Planning and scheduling the operation and production;
- (2) Preparation of maintenance, such as pre-order spare parts;
- (3) Capital budget;
- (4) Determine the occasion of preventive maintenance, and so on.

For example, supposing the average maintenance cost is 300 RMB, and the downtime is 1 hour. In the following 4 weeks after the 175-th weeks, there will be 101 failures. In that case, the maintenance cost and downtime will be 30300 RMB, and 101 hours respectively. About the application of maintenance decision-making, the reader may refer to Jiang et al., (2010) and Jiang and Zhou (2010).

In short, we have used the AR model to modeling the failure number of a certain bus fleet, and compared with the power-law model. The main findings are:

- (1) The power-law model describes the average failure behavior of the failure process, and the AR model reflects the dynamic behavior of the failure process;
- (2) The AR model is applicable to short-term prediction; and the power-law model is applicable to long-term prediction;
- (3) According to the allowable error level, we can determine the model update cycle.

REFERENCES

- Coetzee, J. L. (1997). The role of NHPP models in the practical analysis of maintenance failure data, *Reliability Engineering and System Safety*, **56**, 161-168.
- Jiang, R. and Murthy, D.N.P. (2008). *Maintenance: Decision Models for Management*, Science press, Beijing.
- Jiang, R., Mi, M. and Zhou, Y. (2010). Analysis of bus operational performance and overhaul decision, *The IEEE Conference on Engineering and Business Management*, Chengdu, 5734-5737.

- Jiang, R. and Zhou, Y. (2010). Failure-counting based health evaluation of a bus fleet. 2010 Prognostics and System Health Management Conference, MU3013, 1-4.
- Tingting Huang, Li Wang and Tongmin Jiang (2010). Prognostics of products using time series analysis based on degradation data, 2010 *Prognostics and System Health Management Conference*, MU3106, 1-5.
- Lin Fengchun, Chen Yunxia and Kang Rui (2011). Degradation analysis method based on regretssion time series model under equal and unequal variances, 2011 Prognostics and System Health Management Conference, MU3106, 1-7.
- Chen Zhongmin and Wu Yeqing (2010). The application of theory and method of time series in the modeling of software reliability, 2010 Second International Conference on Information Technology and Computer Science, 340-343.
- Roe, S. and Mba, D. (2009). The environment, international standards, asset health management and condition monitoring: an integrated strategy, *Reliability Engineering and System Safety*, **94**, 474-478.
- Christian H. Weib (2008). The combined INAR(p) models for time series of counts, *Statistics and Probability Letters*, **78**, 1817-1822.
- Hamilton, J. D. (1994). Time series analysis, Princeton university press, New Jersey.