• 제목/요약/키워드: FlbE

검색결과 5건 처리시간 0.024초

The Developmental Regulators, FlbB and FlbE, are Involved in the Virulence of Aspergillus fumigatus

  • Kim, Sung-Su;Kim, Young Hwan;Shin, Kwang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.766-770
    • /
    • 2013
  • Several upstream activators required for proper activation of brlA are involved in the development, vegetative growth, toxin production, and pathogenesis of Aspergillus fumigatus. In this study, we characterized the roles of two upstream developmental regulators, A. fumigatus flbB (AfuflbB) and flbE (AfuflbE), in toxin production and virulence. The deletion of AfuflbB and AfuflbE resulted in reduction of the expression of AfulaeA. Moreover, only about 8% to 10% of fumagillin was produced in the two mutants compared with that of wild type, and ${\Delta}AfuflbB$ strain produced 85% of gliotoxin compared with wild type, whereas none was produced by ${\Delta}AfuflbB$. Flow-cytometric analysis revealed decreased necrotic and apoptotic polymorphonuclear leukocytes cell death after exposure to supernatants from ${\Delta}AfuflbB$ and ${\Delta}AfuflbB$ strains compared with the wild type. These results indicate that FlbB and FlbE are necessary for the proper laeA expression, toxin production, and virulence of A. fumigatus.

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

해양 원형 규조류 Cyclotella meneghiniana 성장 연관 미생물 군집구조 분석: 배양단계에 따른 증거 (Associated Bacterial Community Structures with the Growth of the Marine Centric Diatom Cyclotella meneghiniana: Evidence in Culture Stages)

  • 최원지;박범수;곽야옥;기장서
    • Ocean and Polar Research
    • /
    • 제39권4호
    • /
    • pp.245-255
    • /
    • 2017
  • There are a number of pieces of evidences that suggest a link between marine diatoms and microorganisms, but knowledge about related microbial communities is greatly lacking. The present study investigated the microbial community structures related to the growth of the marine diatom Cyclotella meneghiniana. We collected free-living bacteria (FLB) and particle-associated bacteria (PAB) at each growth stage (e.g., lag, exponential, stationary and death) of the diatom, and analyzed their bacterial 16S rDNA using pyrosequencing. Metagenomics analysis showed that community structures of FLB and PAB differed considerably with the progress of growth stages. FLB showed higher diversity than PAB, but variation in the different growth stages of C. meneghiniana was more evident in PAB. The proportion of the genus Hoeflea, belonging to the order Rhizobiales, was dominant in both FLB and PAB, and it gradually increased with the growth of C. meneghiniana. However, Enhydrobacter clade tended to considerably decrease in PAB. In addition, Marinobacter decreased steadily in FLB, but first increased and then decreased in PAB. These results suggest that Hoeflea, Enhydrobacter, and Marinobacter may be closely related to the growth of diatom C. meneghiniana.

FLB Event Analysis with regard to the Fuel Failure

  • Baek, Seung-Su;Lee, Byung-Il;Lee, Gyu-Cheon;Kim, Hee-Cheol;Lee, Sang-Keun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.622-627
    • /
    • 1996
  • Detailed analysis of Feedwater Line Break (FLB) event for the fuel failure point of view are lack because the event was characterized as the increase in reactor coolant system (RCS) pressure. Up to now, the potential of the rapid system heatup case has been emphasized and comprehensively studied. The cooldown effects of FLB event is considered to be bounded by the Steam Line Break (SLB) event since the cooldown effect of SLB event is larger than that of the FLB event. This analysis provides a new possible path which can cause the fuel failure. The new path means that the fuel failure can occur under the heatup scenario because the Pressurizer Safety Valves (PSVs) open before the reactor trips. The 1000 MWe typical C-E plant FLB event assuming Loss of Offsite Power (LOOP) at the turbine trip has been analyzed as an example and the results show less than 1% of the fuel failure. The result is well within the acceptance criteria. In addition to that, a study was accomplished to prevent the fuel failure for the heatup scenario case as an example. It is found that giving the proper pressure gap between High Pressurizer Pressure Trip (HPPT) analysis setpoint and the minimum PSV opening pressure could prevent the fuel failure.

  • PDF

Tetrodotoxin Occurrence in Ciliated Protozoa and Possible Bacterial Role in its Toxification

  • Do Hyung Ki;MAEDA Masachika;NOGUCHI Tamao;SIMIDU Usio;KOGURE Kazuhiro
    • 한국수산과학회지
    • /
    • 제29권6호
    • /
    • pp.856-861
    • /
    • 1996
  • The occurrence of TTX in ciliated protozoa was investigated in order to clarify tetrodotoxin (TTX) accumulation mechanisms in marine organisms. Tissue culture bioassay, HPLC, and GC-MS analyses confirmed the occurrence of TTX in Euplotes mutabilis and also in bacteria isolated from the culture medium. Fluorescently labeled bacteria (FLB) were prepared with those bacteria, and predation by E. mutabilis was observed. The results indicated that TTX in bacteria can be transferred to higher trophic levels through the food chain.

  • PDF