• Title/Summary/Keyword: Flax fiber

Search Result 48, Processing Time 0.02 seconds

Investigation on Mechanical Properties of Flax/Vinyl Ester Natural Fiber Composite (아마/비닐 에스테르 자연 섬유 복합재료의 기계적 특성 분석 연구)

  • Park, Hyunbum;Kong, Changduk;Lee, Jeonghwan;Kim, Ingwon;Lee, Hoyeon
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, an investigation on mechanical properties of flax/vinyl ester natural fiber composite was performed as a precedent study on the design of eco-friendly structure using flax/vinyl ester composite. Vacuum Assisted Resin Transfer Molding(VARTM) manufacturing method was adopted for manufacturing the flax fiber composite specimen. The mechanical properties of the manufactured flax composites were compared with flax composite data cited from some references. Based on this, the experimental data showed that the flax/vinyl ester composite has some advantages when it is applied to environment-friendly structure.

Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines (30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구)

  • Hye-Jin Shin;Ji-Hyun Lee;Sung-Young Moon;Jounghwan Lee
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.32-36
    • /
    • 2023
  • Recently, as global environmental issues for sustainable development, such as carbon neutrality, have emerged, disposal methods of glass fiber composites, a material of existing wind turbines, have become a problem. To solve this problem, in this study, 30kW wind turbine blades were manufactured using flax fiber-based composites, which are eco-friendly natural fiber composites that can replace existing glass fiber composites, and their suitability was evaluated. First, mechanical strength tests were conducted to verify the feasibility of using eco-friendly natural flax fiber composites as a wind turbine blade material, and as a result, better strength were confirmed compared to previous studies on the properties of flax fiber composites. In addition, the suitability was confirmed through a static strength performance evaluation test to measure the static strength of the flax fiber composite blade using the manufactured 30kW class flax fiber composite blade.

Design of Natural Fiber Composites Chemical Container Using Resin Flow Simulation of VARTML Process

  • Lee, Haseung;Park, Gwanglim;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered -up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Characteristics of Varieties in Natural Fiber Crops in Korea (우리나라 천연섬유 자원식물의 품종특징)

  • SangRaeLee
    • Korean Journal of Plant Resources
    • /
    • v.2 no.2
    • /
    • pp.291-297
    • /
    • 1989
  • It was indicated that natural fiber crops Ln Korea have been major crops, such as cotton, flax, ramie and Kenaf. The major varieties andagronomic characterics are summarized as follows. Cotton variety, Mokpo 6 is long fiber length and, is high lint yield, flax variety, Wiera is hiTh amount of dry stem and grains weiTht. On the other hand, kenaf variety, Suweon 2 is high dry fiber weight and fiher ratio.

  • PDF

The Evaluation of Physical Properties and Hand of Bast/Man-Made Fiber Mixed Fabrics (마와 인조섬유 교직물의 물성 및 평가)

  • 김순심;양진숙;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.828-837
    • /
    • 2000
  • The purpose of this study was to evaluate the physical properties and the hand of bast/man made fiber mixed fabrics compared to linen. The mixed fabrics were made by rayon, polyester and modal fiber as warp yarn, and ramie, flax, rayon/flax and cotton/flax as weft yarn. The crease resistance, drape, tensile strength/extension, water absorbancy and warmth retention were measured for test fabrics. The mechanical properties were measured by Kawabata system, and the hand value was calculated by previously developed equation. The results obtained from this study were as follows: The crease resistance and drape properties of bast/man made fiber mixed fabrics were improved compared to those of linen. The tensile strength of polyester/bast fiber mixed fabrics increased compared to those of linen, but rayon/bast and modal/bast fiber mired fabrics decreased. The extension of all mixed fabrics was increased compared to that of linen. The rayon/ramie and modal/ramie mixed fabrics showed lower warmth retention than linen. The mixed fabrics used rayon and modal as warp yarn showed higher water absorbancy than linen. The Koshi and Hari hand value of all mixed fabrics showed lower than those of linen. Fukurami hand value showed little difference between mixed fabrics and linen. Shari, Kishimi, and Shinayakasa hand value of rayon/bast and modal/bast fiber mixed fabrics showed higher than those of linen.

  • PDF

A Study on Structural Design of Natural Fiber Composites Automobile Body Panel Considering Impact Load (충돌 하중을 고려한 친환경 자연섬유 복합재 적용 자동차 차체 패널의 구조 설계 연구)

  • Park, Kilsu;Kong, Changduk;Park, Hyunbum
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.291-296
    • /
    • 2015
  • In this study, structural design and analysis of the automobile bonnet is performed. The flax/vinly ester composite material is applied for structural design. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite bonnet. The VARTML is a manufacturing process that the resin is injected into the fly layered-up fibers enclosed by a rigid mold tool under vacuum. A series of flax/vinyl ester composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of the automobile bonnet is performed.

The Characteristics of Kenaf/Rayon Fabrics (케냐프/레이온 혼방 직물의 특성에 관한 연구)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1282-1291
    • /
    • 2004
  • Kenaf was cultivated and harvested in large quantity in Cheju Island and Chinju, Kyungsangnamdo. It was chemically rotted with 3% NaOH for 60 minutes at 100$^{\circ}C$, neutralized using 1% acetic acid, washed and dried, and obtained 40kg of dry kenaf fiber. Kenaf 15/rayon 85, flax 15/rayon 85, and rayon 100% yam was spun and the physical characteristics were measured. Plain weave and twill weave fabrics were made using each of the above yarns as the filling yam. Cotton 100% yam was used as the warp yam in all fabrics. Kenaf/rayon blend yarns were higher in tenacity and elongation, lower in yam uniformity, higher in the number of nep than the flax/rayon blended yams. Kenaf/rayon blend fabric had higher tenacity and elongation compared to the flax/rayon blend fabric Kenaf/rayon blend fabric was most stiff in both plain weave and twill weave fabrics whereas drape characteristics was dependent upon the fabric structure of the kenaf/rayon blend and flax/rayon blend. There were little differences between the kenaf/rayon blend fabric and the flax/rayon blend fabric in the Kawabata physical measurements and the PHVs. The only drawback of kenaf fiber was it's surface roughness and it is expected that it can be improved by enzyme retting and mechanical bundle separation.

Evaluation of the Fineness of Degummed Bast Fibers

  • Wang, H.M.;Wang, X.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.171-176
    • /
    • 2004
  • Fiber fineness characteristics are important for yarn production and quality. In this paper, degummed bast fibers such as hemp, flax and ramie have been examined with the Optical Fiber Diameter Analyzer (OFDA100 and OFDA2000) systems for fiber fineness, in comparison with the conventional image analysis and the Wira airflow tester. The correlation between the results from these measurements was analysed. The results indicate that there is a significant linear co-relation between the fiber fineness measurement results obtained from those different systems. In addition, the mean fiber width and its coefficient of variation obtained from the OFDA100 system are smaller than those obtained from the OFDA2000 system, due to the difference in sample preparation methods. The OFDA2000 system can also measure the fiber fineness profile along the bast fiber plants, which can be useful for plant breeding.