• 제목/요약/키워드: Flatwise Tensile Test

검색결과 3건 처리시간 0.018초

Comparison of the biodegradability in the membranes for the guided bone regeneration: preliminary study

  • Lee, Chang-Hyeon;Kang, Yei-Jin;Jo, You-Young;Kweon, HaeYong;Kim, Seong-Gon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제39권1호
    • /
    • pp.9-13
    • /
    • 2019
  • In this study, 4 different types of GBR membrane were undergone for bio-degradability test; Silk mat from silkworm cocoon (TDI), silk mat from flatwise-spun (FS), collagen membrane (OssGuide), and dPTFE membrane (Cytoplast). Each material was segmented in 10.00 mm length and 0.3 mm thickness. The samples were put into the normal saline at $37^{\circ}C$ for 2 weeks. After that, yield strength and tensile strain were measured and compared them with those of before treatment. The morphology of the membranes was observed by SEM. Tensile strain of FS was significantly increased at 2 weeks' normal saline treatment (P=0.018). When compared to OssGuide, TDI and FS showed significantly higher tensile strain at 2 weeks' normal saline treatment (P<0.05). In the SEM images, there were no significant changes in Cytoplast, TDI, and FS after 2 weeks' treatment. However, OssGuide showed damaged surface after 2 weeks' treatment. In conclusion, both TDI and FS did not have any evidence of biodegradability at 2 weeks' observation in normal saline treatment. However, OssGuide showed more than 20 % decrease in yield strength and tensile strain.

GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가 (Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin)

  • 송요진;정홍주;김대길;김상일;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권3호
    • /
    • pp.258-265
    • /
    • 2014
  • 목구조물 접합부에 기존 드리프트핀(Drift pin)을 대체하고자 단판이나 합판을 유리섬유강화플라스틱(GFRP: Glass fiber reinforced plastic)과 복합 적층시킨 GFRP보강적층목재핀을 제작하였다. 더불어 GFRP보강적층목재핀을 사용하여 집성재 접합부의 인장형 전단내력 시험을 실시하였다. GFRP 배열에 따른 보강적층목재핀의 휨강도 시험결과 GFRP를 각층에 1장씩 삽입한 시험편(Type-A)이 가장 양호한 성능을 발휘하였다. 또한 압체압력 $1.96N/mm^2$, 온도 $150^{\circ}C$에서 한 시간 열압하여 고밀화한 시험편이 고밀화하지 않은 시험편과 비교하여 휨강도 성능이 1.57배 향상됨을 확인하였으며, 하중방향에 따라 Edgewise가 Flatwise보다 3.51배 높은 성능을 발휘하였다. 시험을 통해 가장 양호한 성능을 보인 Type-A 보강적층목재핀을 이용하여 전단내력 시험을 실시하였다. 접합구의 종류와 접합판의 종류를 달리하여 시험한 결과 드리프트핀과 강판을 적용한 시험체(Type-DS)와 비교하여 GFRP보강적층목재핀과 GFRP보강목재적층판을 적용한 시험체(Type-WL)가 1.12배 높은 전단내력이 측정되었으며 최대하중 이후에도 매우 양호한 인성이 관찰되었다.

Investigation on Adhesion Properties of Sandwich Composite Structures Considering on Surface Treatments

  • Park, Gwanglim;Oh, Kyungwon;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제1권1호
    • /
    • pp.16-20
    • /
    • 2014
  • Recently, various kinds of study on light weight structure are performing in the world. The Al honeycomb sandwich structural type adopt for improvement of lightness and structural stability to major part structure of aircraft or spacecraft. Adhesion badness properties of adhesive and adhesion properties of fillet mainly studied about al honeycomb structure. But study for adhesive properties of sandwich construction with surface treatment of Aluminum alloy barely performed. In this study, adhesive film was used between Al and honeycomb core of honeycomb panel[1]. The study for adhesive properties of sandwich construction with surface treatment of AA 5052 skin was performed.