• Title/Summary/Keyword: Flat-die pelletizer

Search Result 3, Processing Time 0.018 seconds

Effect of Moisture Content of Sawdust and Length to Diameter Ratio of a Hole in Flat-die Pelletizer on The Fuel Characteristics of Wood Pellets Produced with Quercus mongolica, Pinus densiflora, Pinus rigida and Larix kaempferi

  • Yang, In;Kim, Seong-ho;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.382-398
    • /
    • 2017
  • This study was conducted to identify the potential of Quercus mongolica (QUM), Pinus densiflora (PID) and Pinus rigida (PIR) as a raw material for pellet production. Larix kaempferi (LAK), which has mostly been used for pellet production in Korea, was also used as a control. All specimens contained very minimal amounts of sulfur and chlorine. Ash content of LAK was the lowest, followed by PID, PIR and QUM. For the size distribution, the mass fraction between 0.42 mm and 0.25 mm was the highest in PIR. Most fuel characteristics of the produced wood pellets improved with the use of 12% moisture content (MC) particles and the increase of the ratio of length to diameter of a hole in flat-die (L/D ratio). When the MC, bulk density and durability of QUM, PID, PIR and LAK pellets was compared with the standards of the KFRI and ISO, the use of wood particles of 12% MC and flat-die with an L/D ratio of 5.00 for PID particles are suitable for high-quality pellets in the aspects of all fuel characteristics. For PIR and QUM, further work is needed to seek the optimum conditions for the production of high-quality and durable pellets.

Effect of Bark and Drying Waste Liquor of Larix kaempferi Used as An Additive on The Fuel Characteristics of Wood Pellet Fabricated with Rigida Pine and Quercus mongolica Sawdust (첨가제로서 낙엽송의 수피 및 건조폐액이 리기다소나무 및 신갈나무 펠릿의 연료적 특성에 미치는 영향)

  • Yang, In;Chae, Hyun-Gyu;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.258-267
    • /
    • 2017
  • In this study, pitch pine (Pinus rigida, PIR) and Mongolian oak (Quercus mongolica, QUM) pellets were fabricated with bark or/and drying waste liquor (DWL) of larch (Larix kaempferi, LAK) as an additive. Based on the results of fuel characteristics of the pellets, optimal conditions for producing the high-quality pellets were provided. In the analysis of chemical composition, bark contained holocelluose and lignin of 90% and over. DWL had 0.1% solid assumed to sugars which are generated from the oven-drying of LAK logs. QUM showed high ash content (2.2%) by containing of bark in the sawdust. Bark and DWL of LAK had high ash content of 4% and over. Calorific values of all specimens and additives were higher than that of the $1^{st}$-grade standard of wood pellets designated by NIFOS (18.0 MJ/kg). PIR and QUM pellets were fabricated with additive of 2 wt% based on the solid weight of oven-dried sawdust using a piston-type flat-die pelletizer, and thus ash content and calorific value of the pellets did not affect by the use of additive. Durability of the pellets increased with the use of additive. Durabilties of pellets, which were fabricated with bark as an additive and DWL as a controller of moisture content for sawdust, did not differ from those of pellets without additives and were lower than those of pellets either with bark or DWL. However, use of both bark and DWL for the production of wood pellets might be favorable because it can make a profit from the collection process of DWL. Based on the results of fuel characteristics of the pellets, QUM and PIR pellets were produced by a flat-die pelletizer. Moisture content (MC), bulk density and durability of the pellets improved with the use of additive. Particularly, sawdust MC of 10% and the addition of bark or DWL for PIR as well as sawdust MC of 12% and the addition of bark for QUM might be optimal conditions for the production of high-quality pellets. Except for the ash content of QUM pellets, other properties of PIR and QUM pellets exceeded the $1^{st}$-grade wood pellets standards of NIFOS.

Effect of Sawdust Moisture Content and Particle Size on The Fuel Characteristics of Wood Pellet Fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi Sawdust (신갈나무, 소나무, 낙엽송 목분의 함수율 및 크기가 목재펠릿의 연료적 특성에 미치는 영향)

  • Kim, Seong-ho;Yang, In;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • This study was conducted to investigate the effects of moisture content and particle size of sawdust on the fuel characteristics of wood pellets produced with Mongolian oak (Quercus mongolica, QUM), red pine (Pinus densiflora, PID) and larch (Larix kaempferi, LAK) sawdust using a flat-die pelletizer. Prior to produce wood pellets, the sawdust was controlled to the moisture content of 8, 11, 12% and was screened to the particle size of 2 and 4 mesh. In the analysis of its chemical composition, QUM had a high ash content, and PID and LAK contained large amount of lignin. In case of the fuel characteristics, PID pellets had the lowest moisture content of pellets (P-MC), and LAR pellets was found to have the highest bilk density (BD) and durability (DU). With the increase of moisture content of sawdust (S-MC), P-MC and DU of QUM, PID and LAK pellets increased, but BD of QUM and LAK pellets decreased. When size of sawdust used for the production of wood pellets decreased, P-MC and BD of LAK pellets and BD of QUM pellets increased. Decrease of particle size contributed to the increase of DU of QUM, PID and LAK pellets. In addition, BD and DU of QUM pellets produced with 12% S-MC sawdust increased as its particle size reduced. For LAK pellets, DU was not influence by particle size in the S-MCs of 10% and 12%, but increased with the decrease of particle size in the S-MC of 8%. Based on the results and economical aspects, 10% MC and 2 mesh paricle size for QUM sawdust and 12% MC and 2 mesh particle size for PID sawdust might be optimal conditions for pellets production, and fuel characteristics of wood pellets produced by the conditions greatly exceeded the minimum requirements for the $1^{st}$-grade wood pellets of the standard designated by Korea Forest Research Institute.