DOI QR코드

DOI QR Code

Effect of Sawdust Moisture Content and Particle Size on The Fuel Characteristics of Wood Pellet Fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi Sawdust

신갈나무, 소나무, 낙엽송 목분의 함수율 및 크기가 목재펠릿의 연료적 특성에 미치는 영향

  • Kim, Seong-ho (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Yang, In (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Han, Gyu-Seong (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University)
  • 김성호 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 양인 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 한규성 (충북대학교 농업생명환경대학 목재종이과학과)
  • Received : 2015.04.09
  • Accepted : 2015.07.09
  • Published : 2015.11.25

Abstract

This study was conducted to investigate the effects of moisture content and particle size of sawdust on the fuel characteristics of wood pellets produced with Mongolian oak (Quercus mongolica, QUM), red pine (Pinus densiflora, PID) and larch (Larix kaempferi, LAK) sawdust using a flat-die pelletizer. Prior to produce wood pellets, the sawdust was controlled to the moisture content of 8, 11, 12% and was screened to the particle size of 2 and 4 mesh. In the analysis of its chemical composition, QUM had a high ash content, and PID and LAK contained large amount of lignin. In case of the fuel characteristics, PID pellets had the lowest moisture content of pellets (P-MC), and LAR pellets was found to have the highest bilk density (BD) and durability (DU). With the increase of moisture content of sawdust (S-MC), P-MC and DU of QUM, PID and LAK pellets increased, but BD of QUM and LAK pellets decreased. When size of sawdust used for the production of wood pellets decreased, P-MC and BD of LAK pellets and BD of QUM pellets increased. Decrease of particle size contributed to the increase of DU of QUM, PID and LAK pellets. In addition, BD and DU of QUM pellets produced with 12% S-MC sawdust increased as its particle size reduced. For LAK pellets, DU was not influence by particle size in the S-MCs of 10% and 12%, but increased with the decrease of particle size in the S-MC of 8%. Based on the results and economical aspects, 10% MC and 2 mesh paricle size for QUM sawdust and 12% MC and 2 mesh particle size for PID sawdust might be optimal conditions for pellets production, and fuel characteristics of wood pellets produced by the conditions greatly exceeded the minimum requirements for the $1^{st}$-grade wood pellets of the standard designated by Korea Forest Research Institute.

본 연구는 신갈나무, 소나무, 낙엽송 목분을 이용하여 flat-die pelletizer로 제조한 목재펠릿의 연료적 특성에 대한 목분 함수율 및 크기의 영향을 조사하기 위하여 수행하였다. 각 수종별 화학적 조성을 조사한 결과, 회분 함량은 신갈나무에서, 리그닌 함량은 소나무와 낙엽송에서 높은 것으로 조사되었다. 각 목재펠릿의 연료적 특성은 펠릿 함수율의 경우 소나무에서 가장 낮았으며, 겉보기밀도는 낙엽송, 소나무, 신갈나무 순으로, 내구성은 낙엽송, 신갈나무, 소나무 순이었다. 각 수종별 목분 함수율에 따른 목재펠릿 함수율, 겉보기밀도, 내구성을 측정한 결과, 목분 함수율이 증가함에 따라 모든 수종의 목재펠릿 함수율과 내구성은 증가하였으며, 신갈나무와 낙엽송 펠릿의 겉보기밀도는 감소하였다. 각 수종별 목분 크기에 따른 목재펠릿 함수율, 겉보기밀도, 내구성을 측정한 결과, 목분 크기가 감소함에 따라 낙엽송 펠릿의 함수율과 겉보기밀도 그리고 신갈나무 펠릿의 겉보기밀도는 증가하였다. 한편, 목분 크기의 감소는 신갈나무, 소나무, 낙엽송 펠릿의 내구성 증가에 기여하였다. 각 목분 함수율별 신갈나무, 소나무, 낙엽송 펠릿의 함수율, 겉보기밀도, 내구성에 목분 크기가 미치는 영향을 분석한 결과, 12% 함수율 목분으로 제조한 신갈나무 펠릿의 겉보기밀도와 내구성은 목분 크기가 감소함에 따라 증가하였다. 한편 대조구로 사용된 낙엽송 펠릿의 내구성은 10% 및 12%의 목분 함수율 조건에서 목분 크기에 따른 차이는 없었으나, 8% 목분 함수율 조건에서 목분 크기의 감소와 함께 내구성이 증가하였다. 제조된 목재펠릿의 연료적 특성과 경제적인 측면을 고려한 최적 목분 함수율 및 크기는 신갈나무의 경우 10%와 2 mesh 그리고 소나무의 경우 12%와 2 mesh라는 결론을 얻었으며, 이 조건에서 제조한 목재펠릿의 모든 연료적 특성은 국립산림과학원 목재펠릿 품질규격 1등급 기준을 크게 상회하는 것으로 나타났다.

Keywords

References

  1. Ahn, B.J., Chang, H.S., Cho, S.T., Han, G.S., Yang, I. 2013, Effect of the addition of binders on the fuel characteristics of wood pellet. Journal of The Korean Wood Science and Technology 41(6): 475-489. https://doi.org/10.5658/WOOD.2013.41.6.475
  2. Ahn, B.J., Chang, H.S., Lee, S.M., Choi, D.H., Cho, S.T., Han, G.S., Yang, I. 2014. Effect of binders on the durability of wood pellets fabricated from Larix kaempferi C. and Liridendron tulipifera L. sawdust. Renewable Energy 62: 18-23. https://doi.org/10.1016/j.renene.2013.06.038
  3. Ahn, B.J., Cho, S.T., Cho, T.S., Chae, K.S., Choi, S.Y. 2013. Analysis of production economic efficiency for domestic industry of wood pellets. 2013 Proceedings of The Korean Society of Wood Science and Technology Annual Meeting: 112-113.
  4. Ahn, B.J., Lee, S.M., Choi, S.H., Cho, S.T., Choi, D.H. 2013. Preparation of standards and quality standard for the implementation of wood fuel labeling. 2013 Proceedings of The Korean Society of Wood Science and Technology Annual Meeting: 114-115.
  5. Cordero, T., Marquez, F., Rodriguez-Mirasol, J., Rodriguez, J. 2001. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80: 1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5
  6. Dhamodaran, T.K., Gnanaharan, R., Thulasidas, P.K. 1989. Calorific value variation in coconut stem wood. Wood Sci. Technol. 23: 21-26. https://doi.org/10.1007/BF00350603
  7. Han, G.S. 2012. Trend and outlook of wood pellet industry. Prospective of Industrial Chemistry 15(6): 54-61.
  8. Han, G.S., Yang, I., Sagong, M. 2012. Investigation of the basic properties of agriculture residues as a raw material for the production of agropellets and the evaluation of their fuel characteristics. Journal of Korea Society of Waste Management 29(2): 169-179.
  9. Jeong, G.S., Park, B.S. 2007. Wood properties of the useful tree species grown in Korea. Korea Forest Research Institute, Seoul, Republic of Korea.
  10. Kaliyan, N., Morey, R.B. 2009. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy 33: 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
  11. Kim, S.H., Jeong, S.K., No, S.G., Kim, M.Y., Han, G.S. 2013. Comparison of wood pellets distributed domestically. 2013 Proceedings of The Korean Society of Wood Science and Technology Annual Meeting: 118-119.
  12. Korea Association of Pellet. 2014. Korea Forest Service-Statistical data of wood pellet. http://www.koreapellet.org/ [accessed Dec 30, 2014].
  13. Korea Forest Research Institute. 2013. Standard of Wood Pellets, KFRI No. 2013-5, Seoul, Republic of Korea.
  14. Lee, S.M., Ahn, B.J., Choi, D.H., Han, G.S., Jeong, H.S., Ahn, S.H., Yang, I. 2013, Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass and Bioenergy 48: 1-9. https://doi.org/10.1016/j.biombioe.2012.10.015
  15. Lee, S.M., Choi, D.H., Cho, S.T., Nam, T.H., Han, G.S., Yang, I. 2011. Effects of various factors on the durability of pellets fabricated with Larix kaempferi C. and Liridendron tulipifera L. sawdust. Journal of The Korean Wood Science and Technology 39(3): 258-268. https://doi.org/10.5658/WOOD.2011.39.3.258
  16. Obernberger, I., Thek, G. 2004. Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass and Bioenergy 27: 653-669. https://doi.org/10.1016/j.biombioe.2003.07.006
  17. Park, H., Kim, S.B., Seo, J.W., Lee, U.S., Kang, C.Y. 2013. Fuel characteristics of pellets produced with food waste and sawdust. 2013 Proceedings of The Korean Society of Wood Science and Technology Annual Meeting: 122-123.
  18. Ryu, J.H., Park J.G. 2014. Effect of specific gravity on the bulk density of wood pellets. Personal communication (Accessed at 4 December 2014).
  19. White, R.H. 1987. Effect of lignin content and extractives on th higher heating value of wood. Wood and Fiber Science 19(4): 446-452.

Cited by

  1. . Cubes and the Impact of Binder on Durability of Pellets Fabricated with the Torrefied Cubes pp.19447442, 2019, https://doi.org/10.1002/ep.13190