• Title/Summary/Keyword: Flat plate flow

Search Result 398, Processing Time 0.028 seconds

The Development of the Climatic Design Tool for Energy Efficient Building Design (태양열 축열조가 없는 변유량 제어 방식의 지역난방용 태양열시스템 실증시험연구)

  • Baek, Nam-Choon;Shin, U-Chul;Lee, Jin-Kook;Yoon, Eung-Sang;Yoon, Suk-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.21-27
    • /
    • 2008
  • In this study, the design of the solar heating system for district heating as well as it's operating characteristics and the performance analysis was carried out. This solar district heating system was composed of two different types of solar collector circuit, flat plate and vacuum tube solar collector, in a system. This system supply constant temperature of hot water without solar buffer tank. For this, the proportional(variable flow rate) control was used. The experimental facility for this study was used the Bundang district solar heating system which was installed in the end of 2006. The operating characteristics and behaviour of each collector circuits are investigated especially for the system design and control. The yearly solar thermal efficiency is 47.5% on the basis of aperture area and 39.8% on the basis of gross area of collector. As a result this solar heating system without solar buffer tank and with proportional controller was testified a very effective and simplified system for district heating. It varied especially depend on the weather condition like as solar radiation and ambient temperature.

Particle removal characteristics of high-velocity electrostatic mist eliminator (정전 고속 미스트 엘리미네이터의 포집 효율 특성)

  • Kim, Jin-seon;Kim, Hak-Joon;Han, Bangwoo;Woo, Chang Gyu;Kim, Yong-Jin;Lee, Sangrin;Moon, Sangchul
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.121-133
    • /
    • 2018
  • In this study, we developed a flat-plate type wet electrostatic precipitator that generates stable corona discharge compared to wire type discharge electrode. In order to compare the particle removal efficiency according to the shape of the discharge electrode such as the variation of the horizontal and vertical distance between spiked edges, and the variation of the height of discharge pin support were tested. As a result, when the horizontal distance between spiked edges was increased up to 36 mm, the vertical distance between spiked edges was increased up to 54 mm, and the height of the discharge pin support was increased up to 76 mm, the removal efficiency of PM10 was maintained at approximate 60.0%. Furthermore, the removal efficiency of particles over $5{\mu}m$ was about 80% or more. When the flow rate was 4 m/s, the gap between collection plates was 60 mm, and -14 kV was applied to the discharge electrode. The particle removal efficiency of the flat-plate type electrostatic precipitator was maintained when the horizontal and vertical distance between spiked edges, and the height of the discharge pin support was below a certain level. Those variables may be the important design factors for the shape of the discharge electrode. Therefore, when designing the electrostatic precipitator with multiple channels, the horizontal and vertical distance between spiked edges, and the height of discharge pin support must be selected in consideration of the weight of the discharge electrode and the processing cost.

Technique of Heat Transfer Augmentation in Impinging Air Jet System (충돌공기(衝突空氣) 분류계(噴流系)에서의 전열촉진기술(傳熱促進技術)에 관(關)한 연구(硏究))

  • Choi, Doo-Seob;Kum, Seong-Min;Lee, Yong-Hwa;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.11-21
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular impingement air jet vertically on the flat heating surface. The technique used in the present study was placement of square rod bundles as a turbulence promoter in front of the heat transfer surface. The results obtained through this study were summerized as follws. High heat transfer enhancement was achieved by inserting rods in front of the heating flat plate. According to visulaization, it was examined because of flow acceleration and separation and disturbance of boundary layer. The smaller clerance between rod and heating plate was, the larger heat transfer effect became at each H/B. Arverage Nusselt number reached maximum at H/B=10 and the local augmentation rate of heat transfer became maximum at H/B=2. The maximum average heat transfer enhancement rate increase about 43% for the case of X/B=2 and C=1mm, compared to a flat plate without rods. The correlating equation of average Nusselt number and Reynolds number was obatined. As follws : ${\overline{Nu}}_0=1.249Re^{0.465}(C/A)^{-0.033}(H/B)^{0.013}$.

  • PDF

Turbulent Flow over 2-D Rectangular-Shaped Roughness Elements with Various Spacings(Part 1 : Time Averaged Flow) (사각단면을 갖는 환경 거칠기 요소의 거칠기 간격에 따른 유동 변화 (제1보: 평균유동장))

  • Hyun B.S.;Suh E.J.;Kim M.R.;Choi K.C.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.79-84
    • /
    • 2006
  • The present study deals with the flow over a flat plate with repeated roughness elements of 2-dimensional rectangular shape, which can be applied into the study on the natural geographical roughness and the turbulent flow on roughened solid surface. Experiment was performed using PIV technique in the circulating water channel. Results showed that the flow over roughness elements was characterized by the high shear flow emanating from top of roughness element and the recirculating region formed at the trough of two roughness elements. In general, the ratio between the spacing and the height of roughness elements plays a crucial role in developing the flow pattern near wall surface.

  • PDF

An Experimental Study on Quantitative Interpretation of Local Convective Heat Transfer for the Fin and Tube Heat Exchanger Using Lumped Capacitance Method (Lumped Capacitance 방법을 이용한 휜-관 열교환기의 정량적 국소 대류 열전달 해석을 위한 실험적 연구)

  • Kim, Ye-Yong;Kim, Gwi-Sun;Jeong, Gyu-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • An experimental study has been performed to investigate the heat transfer characteristics of fin and tube heat exchanger. The existing transient and steady methods are very difficult to apply for the measurements of heat transfer coefficients of a thin heat transfer model. In this study the lumped capacitance method was adopted. The heat transfer coefficients were measured by using the lumped capacitance method based on the liquid crystal thermography. The method is validated through impinging jet and flat plate flow experiments. The two experiments showed that the results of the lumped capacitance method with polycarbonate model showed very good agreements with those of the transient method with acryl model. The lumped capacitance method showed similar results regardless of the thickness of polycarbonate model. The method was also applied for the heat transfer coefficient measurements of a fin and tube heat exchanger. The quantitative heat transfer coefficients of the plate fin were successfully obtained. As the frontal velocity increased, the heat transfer coefficients were increased, but the color-band shape showed similar patterns regardless of frontal velocity.

A Study on the Trapezoidal Cutthroat Flumes for Measuring Flow in Open-Channels (개수로의 유량 측정을 위한 제형 Cutthroat Flume에 관한 연구)

  • 윤주상;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.4
    • /
    • pp.4533-4543
    • /
    • 1977
  • The purpose of this study was to investigate and compare flow discharges of rectangular, V-notch and trapezoidal type of cutthrooat flumes, and the published data for trapezoidal parshall flumes. And the trapezoidal cutthroat flumes were also compared in their accuracy of discharge measurements for various convergence ratios in the inlet section and divergence ratios in the outlet section. Five flumes were studied, and all the flumes were 45cm long with flat-bottom and were made of well-finished transparent acryl plate of 3mm thickness. One rectangular, one V-notch and three trapezoidal types were numbered 1 to 5 as shown in Fig. III-1. The measured depth of water was ranged from 5 to 20cm. The results obtained in this study are summarized as follows: 1. The general discharge equations for tested prototypes are listed for free flow in Table IV-1 and for submergence flow in Table IV-4. 2. In both free and submerged flow, the accuracy of the discharge formula obtained by this test is highly significant at 1% level as shown in Table IV-2 and Table IV-6. The accuracy of disharges measured depends upon the convergence and divergence ratios in the trapezoidal types: the less the ratios of convergence as well as divergence, the lower the accuracy. 3. Submergence ratios tend to increase in the order of flume number except flume No. 4. This implies that trapezoidal cutthroat flumes are more acceptable than rectangular or V-notch ones for free flow. 4. The transition submergence for the trapezoidal Parshall flumes ranges from 80-85 percent, which is slightly higher than the tested flume. However, the trapezoidal cutthroat flume No. 5 has higher transition submergence ratio, ranging from 73-78 percent, than other trapezoidal ones. The difference between the trapezoidal Parshall flumes and the trapezoidal cutthroat flumes in transition submergence seems small enough to be ignored in their field use. 5. Trapezoidal cutthroat flume is simple and economical to construct in existing openchannels whose shapes are generally trapezoidal. In order to obtain the best rating accuracy, flume No. 3 among the tested trapezoidal types is recommended, because it shows the highest accuracy for both free and submerged flow.

  • PDF

The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating (온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

CFD ANALYSIS OF HEAT TRANSFER PERFORMANCE OF A REFRIGERATOR CONDENSER (CFD 해석을 통한 냉장고용 응축기 전열성능 연구)

  • Yoo, S.S.;Hwang, D.Y.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.303-309
    • /
    • 2009
  • In this study, the heat transfer and flow field of condenser used on Kim-chi refrigerator is analysed with numerical method. Main objective is to present the base data for designing new condenser model with improvement of heat transfer performance. For CFD analysis, a commercial code, STAR-CCM+ was used. The water was used for the inner working fluid and the air was used for the outer fluid. The condenser type used in this study is a flat plate fin-and-tube heat exchanger. As factors for performance analysis, the effect of condenser geometry and air velocity was investigated. As a result, it has been observed that there is a suitable fin pitch with which heat transfer performance of condenser is maximized.

  • PDF

Roughness effect on performance of a multistage axial compressor (다단 축류압축기의 표면조도가 성능에 미치는 영향)

  • Han, Kyung-ho;Kang, Young-seok;Kang, Shin-hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.264-270
    • /
    • 2002
  • This paper presents roughness effects on flow characteristics and efficiency of multi-stage axial compressor using numerical simulation. which is carried out with a commercially available software, CFX-TASCflow. In this paper, the third of four stages of GE low pressure compressor is considered including me stator and rue rotor. Mixing-plane approach is adopted to model the interface between the stator and the rotor: it is appropriate for steady state simulation. First, a flat plate simulation was performed to validate how exact the numerical simulation predicts the roughness effect for smooth and rough walls. Then GE compressor model was calculated about at each roughness height. Concluding, very small roughness height largely affects the performance of compressor and the increasing rate of loss decrease as roughness height increase.

  • PDF

BASE DRAG PREDICTION OF A SUPERSONIC MISSILE USING CFD (CFD를 이용한 초음속 유도탄 기저항력 예측)

  • Lee Bok-Jik
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.59-63
    • /
    • 2006
  • Accurate prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Loman(B-L), Spalart-Allmaras(S-A), k-$\varepsilon$, k-$\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control fins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.