• Title/Summary/Keyword: Flat heating

Search Result 159, Processing Time 0.032 seconds

Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings (갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향)

  • Lee, Jung-Min;Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Dong-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

Technique of Heat Transfer Augmentation in Impinging Air Jet System (충돌공기(衝突空氣) 분류계(噴流系)에서의 전열촉진기술(傳熱促進技術)에 관(關)한 연구(硏究))

  • Choi, Doo-Seob;Kum, Seong-Min;Lee, Yong-Hwa;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.11-21
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular impingement air jet vertically on the flat heating surface. The technique used in the present study was placement of square rod bundles as a turbulence promoter in front of the heat transfer surface. The results obtained through this study were summerized as follws. High heat transfer enhancement was achieved by inserting rods in front of the heating flat plate. According to visulaization, it was examined because of flow acceleration and separation and disturbance of boundary layer. The smaller clerance between rod and heating plate was, the larger heat transfer effect became at each H/B. Arverage Nusselt number reached maximum at H/B=10 and the local augmentation rate of heat transfer became maximum at H/B=2. The maximum average heat transfer enhancement rate increase about 43% for the case of X/B=2 and C=1mm, compared to a flat plate without rods. The correlating equation of average Nusselt number and Reynolds number was obatined. As follws : ${\overline{Nu}}_0=1.249Re^{0.465}(C/A)^{-0.033}(H/B)^{0.013}$.

  • PDF

A Study on the Fabrication of Heater based on Silicone Rubber (실리콘러버 기반의 히터제작에 관한 연구)

  • Jeong-Oh Hong;Jae Tack Hong;Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • Since silicone rubber heaters are flexible, they can be directly attached or installed in objects to be heated even in flat, curved or three-dimensional shapes. Since the current heating method heats the entire object to be heated and raises it to a required temperature, ignoring areas or positions where heat is not required, partial intensive heating cannot be performed. When using multi-heating zones, rather than heating the entire object to be heated, only the parts that need heat are intensively heated according to the process, so it is possible to heat quickly by local location by applying different amounts of heat with a small amount of electric capacity to each place that needs heat, and heat energy can reduce. In this study, the temperature and heating time of the partially concentrated region in the multi-heating region structure are measured so that a uniform temperature or temperature difference occurs in the region requiring thermal fusion. In order to determine the optimal power density range and reduce capacitance, the safety of a silicon rubber heater manufactured with a multi-heating zone structure is investigated. If the silicon rubber heater is manufactured in a multi-heating method, the multi-intensive heating technology can be ideally applied to all heating processes.

Effects of Change of Wafer Shape through Heating on Chemical Mechanical Polishing Process (가열에 의한 웨이퍼 형상 변화가 CMP에 미치는 영향)

  • 권대희;김형재;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2003
  • Removal rate and Within Wafer Non-Uniformity (WIWNU), the most critical issues in Chemical Mechanical Polish (CMP) process, are related to the pressure distribution, wafer shape, slurry flow, mechanical property of pad and etc. Among them, wafer warp generated by other various manufacturing process of wafer may induce the deviation of pressure distribution on the backside of wafer. In the convex shaped wafer the pressure onto the backside of wafer is higher than that of perfectly flat shaped wafer. Besides, such an added pressure is in proportion to the curvature of wafer. That is, the bigger the curvature of wafer becomes the higher the removal rate goes. And the WIWNU is known to be directly related to the pressure distribution on the wafer as well. In other words, the deviation of pressure distribution is in proportion to the WIWNU. In this paper, it is found that the wafer shape may be modified through heating the backside of it and thus properly changed pressure onto the backside of it may improve the WIWNU.

High Temperature Solar Gas Heating by a Compact Fluidized-Bed Receiver of Closed-Type (밀폐형 유동층을 이용한 태양광 고온가스가열 장치의 연구)

  • Choi, Jun-Seop
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.88-94
    • /
    • 1992
  • A small-scale solar collector and tracking system, using a Fresnel lens of $0.5m^2$, and novel compact fluidized-bed solar receiver[FBR] of closed type has been developed for high temperature solar gas heating. The FBR was improved in carrying over of SiC powder and thermo-siphon effect. The maximum outlet air temperature of 1140K and the maximum thermal efficiency of 64% were obtained. The present FBR's operated efficiently at extremely high temperatures in comparison with conventional solar receivers, composed of flat or tubular solid surfaces.

  • PDF

Simulation of Line Heating Process by Finite Element Analysis (유한요소해석에 의한 선상가열 변형의 시뮬레이션)

  • I.S. Nho;J.G. Shin;K.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-83
    • /
    • 1995
  • As a basic research for the automation of plate forming process, the theoretical aspect of plate bending by line heating was surveyed and numerical simulation of plate bonding deformation was performed using the 3-dimensional nonlinear transient thermal elasto-plastic finite element analysis. Analyzing the unsteady heat conduction problem of the flat steel plate under heat flux input by gas torch, the time history of 3-dimensional thermal distribution was obtained. Transient thermal deformation process of the plate was analyzed under the thermal loading. And the calculated results are investigated in detail.

  • PDF

Performance Tests on an Air Solar Heating System (공기식 태양열 난방계통의 성능실험)

  • Nam, Pyeong-Woo;Cha, Jong-Hee
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 1979
  • The performance of air type solar heating system has been investigated for a system which has been operating continuously for two years. Design factors of a collector, such as the effective transmittance-absorptance and heat transfer factor were also determined experimentally. The flat plate collector is fabricated from steel sheet metal with two sealed glass covers. Solar heat is stored in a pebble bed of primarily granitic rock approximately 20-40 mm in diameter. The system is controled by automatically driven motors and dampers. The ratio of useful collected solar heat divided by the total solar radiation on the collector dropped was the range of 35 to 42 percent in monthly average. As it result, the air system was found fairly competitive with the water system, however, the heat supply from storage was limited because of using the pebble as the heat storage media.

  • PDF

Observation of Peptide-Ion Generation by Laser-Induced Surface Heating from Tungsten Silicide Surfaces

  • Kim, Shin-Hye;Park, Sun-Hwa;Song, Jae-Yong;Han, Sang-Yun
    • Mass Spectrometry Letters
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 2012
  • We report observation of laser desorption/ionization (LDI) of peptides from flat surfaces of tungsten silicide ($WSi_2$). In contrast to MALDI (matrix-assisted laser desorption/ionization) and SALDI (surface-assisted laser desorption/ionization) mass spectrometry, this study did not utilize any matrices and surface nanostructures. In this work, LDI on $WSi_2$ surfaces is demonstrated to cover a mass range up to 1,600 Da (somatostatin; monoisotopic mass = 1637.9 Da). In addition, it exhibited a high sensitivity, which could detect peptides, which could detect peptides of low femtomole levels (20 fmol for angiotensin II). The observed LDI process was discussed to be largely thermal, more specifically, due to laser-induced surface heating that is most likely promoted by the low thermal diffusivity (${\kappa}$) of $WSi_2$ substrate.

An Analytical Solution for the Unsteady Close-Contact Melting by Convective Heating (대류가열 비정상 접촉융해에 대한 해석해)

  • Yoo, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.450-458
    • /
    • 2000
  • This study deals with the unsteady close-contact melting of solid blocks on a flat surface subject to convective heating. Normalizing the model equations in reference to the steady solution successfully leads them to cover constant heat flux and isothermal limits at small and large extremes of the Biot number, respectively. The resulting equations admit a compactly expressed analytical solution, which includes the previous solutions as a subset. Based on the steady solution, the characteristics of close-contact melting can be categorized into constant heat flux, transition, and isothermal regimes, the boundaries of which appear to be nearly independent of the contact force. The unsteady solutions corresponding to Biot numbers in the transition regime show intermediate behaviors between those of the two limits. With a proper approximation, the present solution procedure can cope with the case of variable fluid temperature and heat transfer coefficient. Regardless of imposed conditions, the mean normalized Nusselt number during the unsteady process asymptotically approaches to a constant value as the Biot number comes close to each limit.

Study on Thermal Analysis for Heating System of Mobile Smart Device Cover Glass Molding Machine (Mobile Smart Device Cover Glass 성형기기의 가열시스템 열해석에 관한 연구)

  • Shin, Hwan June;Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.50-55
    • /
    • 2014
  • Currently, flat cover glasses are widely applied to mobile devices. However, for a good design and for convenience of use, curved cover glasses are in demand. Thus, many companies are attempting to produce curved cover glasses using a shaving technique, but the production efficiency is very low. Therefore, a molding technique has been adopted to increase the efficiency of curved glass production systems. For a glass molding system, a uniform temperature distribution of the mold is crucial to produce high-quality curved cover glasses. Before setting the heating conditions of the molding system for a uniform temperature distribution by a thermal analysis, verification is required. Therefore, in this study, temperature measurements were conducted for a prototype molding system and the experimental results were compared with simulation computations. The temperatures of the heating block surface were in good agreement with the computational results for transient and steady conditions.